
Shadow Paging Is Feasible

Licentiate's Thesis

Tatu Yl�onen

Teknillinen korkeakoulu Helsinki University of Technology

Tietotekniikan osasto Faculty of Information Technology

Tietojenk�asittelytekniikan laitos Department of Computer Science

Otaniemi 1994

HELSINKI UNIVERSITY OF ABSTRACT OF THE

TECHNOLOGY LICENTIATE'S THESIS

Author: Tatu Yl�onen

Name of the thesis: Shadow Paging Is Feasible

Date: May 3, 1994 Number of pages: 166

Department: Faculty of Information Technology Professorship: Tik-76

Supervisor: Professor Eljas Soisalon-Soininen

Instructor:

Many areas of the modern society have become dependent on large computer systems.

Database systems are used to manage the data stored in the computers. Their central

functions include concurrent access to the data, enforcing security and integrity, and

physically organizing data so that it can both be used e�ciently and maintained reliably

in the presence of software, hardware, and other failures.

Transactions are the foundation of database systems. A transaction is an atomic unit

of work. That is, the work of a transaction is either performed entirely, or not at all.

Transactions are the basis for all work on fault tolerance and concurrency control in

databases.

Shadow paging is one method for implementing fault tolerance and concurrent access.

However, it has been considered unsuitable for large multi-user systems. The problems

have included inability to do �ne-granularity locking, B-tree locking, two-phase commit,

incremental dumping, media recovery, clustering, and most of all, bad performance.

This thesis presents solutions the abovementioned problems, removing the primary ob-

stacles in the use of shadow paging. It is also shown that shadow paging can be used

to take transaction-consistent snapshots very e�ciently, which may permit certain ap-

plications that have not been possible with existing database systems.

Keywords: databases, crash recovery, concurrency control, shadow paging, �ne-

granularity locking, B-tree management, snapshots, on-the-
y incremental dumping,

clustering, media recovery, two-phase commit

iii

iv

TEKNILLINEN KORKEAKOULU LISENSIAATINTY

�

ON TIIVISTELM

�

A

Tekij�a: Tatu Yl�onen

Ty�on nimi: Varjosivutus on k�aytt�okelpoinen

P�aiv�am�a�ar�a: 3. toukokuuta 1994 Sivuja: 166

Osasto: Tietotekniikan osasto Professuuri: Tik-76

Ty�on valvoja: Professori Eljas Soisalon-Soininen

Ty�on ohjaaja:

Monet yhteiskunnan alat ovat tulleet riippuvaisiksi laajoista atk-j�arjestelmist�a.

Tietokantoja k�aytet�a�an j�arjestelmiss�a olevan tiedon tallennukseen, sen eheyden ja

turvallisuuden takaamiseen, ja tiedon organisointiin fyysisesti niin, ett�a sit�a voidaan

toisaalta k�asitell�a tehokkasti, ja toisaalta sen s�ailyminen voidaan taata my�os

vikatilanteissa.

Tapahtuma on tietokannan k�ayt�on perusyksikk�o. Tapahtuma on yhten�a

kokonaisuutena teht�av�a operaatio, eli se tehd�a�an aina kokonaan tai ei lainkaan.

Tapahtumien eheyden takaaminen on perustana tietokantojen vikasietoisuudelle ja

yht�aaikaiselle k�ayt�olle.

Varjosivutus on yksi tapa vikasietoisuuden ja rinnakkaisen k�ayt�on toteuttamiseen.

Sit�a on kuitenkin pidetty huonona useista syist�a. Sill�a ei ole pystytty toteuttamaan

tietuetason lukitusta, tehokasta hakemistojen k�asittely�a, hajautettuja tietokantoja,

tehokasta varmuuskopiointia, vikasietoisuutta laitevikojen osalta eik�a ryv�astyst�a.

T�arkein syy on ollut se, ett�a varjosivutuksen suorituskyky on ollut paljon muita

vaihtoehtoja huonompi.

T�ass�a ty�oss�a esitet�a�an ratkaisut mainittuihin ongelmiin, jolloin varjosivutuksesta

tulee varteenotettava vaihtoehto tietokantojen vikasietoisuuden ja yht�aaikaisen k�ayt�on

toteutuksessa. Lis�aksi varjosivutuksella on mahdollista ottaa n�aenn�ainen kopio

tietokannasta eritt�ain tehokkaasti, mik�a saattaa mahdollistaa sellaisia sovelluksia,

jotka eiv�at ole nykyisill�a tietokannoilla olleet lainkaan mahdollisia.

Avainsanat: tietokannat, vikasietoisuus, rinnakkaisuus, varjosivutus, tietuetason

lukitus, hakemistojen lukitus, n�aenn�aiskopiot, varmuuskopiointi, ryv�astys,

hajautetut tietokannat

v

vi

Acknowledgements

First and foremost, I thank my professor, Eljas Soisalon-Soininen, for his

encouragement and support. His long-term experience with databases has

provided me with many important insights, references, and ideas, and he

had an important role in securing the funding for this project.

I thank all those who have participated in building the Shadows database

system prototype: Johannes Helander, Sampo Kellom�aki, Tero Kivinen,

Kenneth Oksanen, and Heikki Suonsivu. This work would not have been

possible without their work, ideas, and discussions. I particularly want

to acknowledge the contribution of Johannes Helander and Tero Kivinen

to media recovery, the contribution Tero Kivinen, Heikki Suonsivu, and

Tomi M�annist�o to various details of snapshot implementation, the contri-

bution of Tero Kivinen to some of the semaphore locking protocols with

�ne-granularity locking, and the contribution of Eljas Soisalon-Soininen to

my understanding of early releasing of locks and its relation to strict two-

phase locking.

Heikki Suonsivu and I built the �rst shadow paging prototype using

some of these ideas in Spring 1992 [109]. This prototype eventually led to

the Shadows project and this thesis. I thank Heikki for the the work we did

together.

The SSP/SDB project carried out by Tero Kivinen and Heikki Suonsivu

for New Generation Software (NGS) Oy, Inc. in late 1992 and early 1993

also contributed to the development of these ideas. Heikki did the �rst

implementation of snapshots during that project, and Tero's work made me

understand what was needed to implement recovery for indexes.

Kenneth Oksanen has thrown many intriguing questions and ideas at me.

Some of these may turn out to be very useful extensions and optimizations of

the ideas presented in this work. He has also helped me with mathematical

analyses of several aspects of the system, and has taken over much of the

administrative work of the Shadows project from me. For all this I am deeply

vii

indebted.

The work on �ne-granularity locking with B-trees was highly in
uenced

by experience gained during my Master's project. I thank Eljas Soisalon-

Soininen who supervised that work and introduced me to the research on

the �eld.

I thank Per-

_

Ake Larson for his patience, comments, and suggestions on

these ideas and this thesis. I thank Jim Gray for his encouraging comments

and insightful criticism in the early phases of the project. I also thank Antoni

Wolski, Jari Veijalainen, Jarmo Ruuth, and Heikki Tuuri for their comments

and questions.

I thank the members of the Steering Committee of the Shadows project,

Kari Hiekkanen (NGS), Maaret Karttunen (NTC), Heikki Saikkonen (HUT),

Matti Sihto (TEKES), Eljas Soisalon-Soininen (HUT), Artturi Tarjanne

(Solid), and Matti Tikkanen (NTC), for their support and trust in this work.

This research was funded by TEKES and the Academy of Finland. Sun

Microsystems donated a SPARCstation 10/402 for the project. Nokia Tele-

communications, New Generation Software (NGS) Oy, and Solid Information

Systems each gave support for the project. I thank all of the abovementioned

organizations for their support.

viii

Contents

I Introduction 1

1 Database Management 3

1.1 The Need for General-Purpose Database Management Systems 3

1.2 Data Abstraction : 5

1.3 Requirements for a Database Management System : : : : : : 6

1.4 Transactions and Atomicity : : : : : : : : : : : : : : : : : : : 7

2 Fault-Tolerant Computing 9

2.1 Failures, Reliability, Failfast, Masking, Modularity : : : : : : 10

2.2 Faults and Outages in Practice : : : : : : : : : : : : : : : : : 11

2.3 Transactions and Software Fault Tolerance : : : : : : : : : : : 13

2.4 Real, Unprotected, and Protected Actions : : : : : : : : : : : 15

2.5 Spheres of Control : 16

2.6 Database System as Part of a Reliable Computer System : : 17

3 Transaction Models 19

3.1 Flat Transactions : 19

3.2 Flat Transactions with Savepoints : : : : : : : : : : : : : : : 20

3.3 Distributed Transactions : 20

3.4 Nested Transactions : 22

3.5 Other Transaction Models : 23

3.5.1 Chained Transactions : : : : : : : : : : : : : : : : : : 23

3.5.2 Multi-Level Transactions : : : : : : : : : : : : : : : : 23

3.5.3 Long-Lived Transactions : : : : : : : : : : : : : : : : : 23

3.5.4 Sagas : 24

3.5.5 Cooperating Transactions : : : : : : : : : : : : : : : : 24

ix

4 Concurrency Control 25

4.1 Serializability : 25

4.2 Recoverability : 26

4.3 Avoiding Cascading Aborts : : : : : : : : : : : : : : : : : : : 26

4.4 Strict Executions : 27

4.5 Degrees of Isolation : 27

4.6 Two-Phase Locking : 28

4.7 Deadlocks : 28

4.8 Predicate Locks : 29

4.9 Granular Locks : 30

5 Recovery 33

5.1 Types of Storage : 33

5.2 Log-Based Recovery : 34

5.3 Write-Ahead Logging : 35

5.4 Media Recovery : 36

5.4.1 Recovering from a Bad Block : : : : : : : : : : : : : : 37

5.4.2 Recovering from a Disk Crash : : : : : : : : : : : : : : 38

5.4.3 Recovering from Site Loss : : : : : : : : : : : : : : : : 38

5.5 Classi�cation and Performance Issues : : : : : : : : : : : : : : 39

5.6 Clustering : 39

6 Shadow Paging 41

6.1 The Original Shadow Page Algorithm : : : : : : : : : : : : : 42

6.2 Intentions Lists : 43

6.3 Page Table in Shadowed Storage : : : : : : : : : : : : : : : : 44

6.4 Clustering with Shadow Paging : : : : : : : : : : : : : : : : : 45

6.5 Performance Results : 45

II The New Shadow Paging Algorithms 47

7 Introduction 49

7.1 The Variant of Shadow Paging Used in This Work : : : : : : 50

7.2 The Impact of Technological Development : : : : : : : : : : : 52

8 Fine-Granularity Locking Supporting Extended Lock Modes

and Early Releasing of Locks 55

8.1 The Lifetime of a Transaction : : : : : : : : : : : : : : : : : : 56

x

8.2 Commit Processing and Combining Transactions : : : : : : : 57

8.3 Aborting Transactions : 58

8.4 Early Releasing of Locks : 59

8.5 Relaxing Durability : 60

8.6 Very Large Transactions : 60

8.7 Extended Lock Modes : 61

8.8 Read Operations : 61

8.9 Interaction with Write Optimizations : : : : : : : : : : : : : : 61

8.10 Interaction with Media Recovery : : : : : : : : : : : : : : : : 62

8.11 Interaction with Snapshots : : : : : : : : : : : : : : : : : : : 62

9 Implementing Fine-Granularity Locking 63

9.1 Overview : 63

9.2 The BaseTransaction Class : : : : : : : : : : : : : : : : : : : 66

9.3 Data Structures : 67

9.4 Locking Protocols : 68

9.5 Implementation : 70

9.5.1 commit transaction : 70

9.5.2 The Commit Thread : : : : : : : : : : : : : : : : : : : 71

9.5.3 abort transaction : 71

9.5.4 read page : 72

9.5.5 allocate page : 72

9.5.6 free page : 73

9.5.7 read page for update : : : : : : : : : : : : : : : : : : : 73

10 B-Tree Index Management 75

10.1 Background : 75

10.2 Operations on B-Trees : 76

10.3 Locking Protocols for Ordered Lists : : : : : : : : : : : : : : 77

10.3.1 Key-Range Locking : : : : : : : : : : : : : : : : : : : 78

10.3.2 Dynamic Key-Range Locking : : : : : : : : : : : : : : 78

10.3.3 Separate Lock Modes for the Range : : : : : : : : : : 80

10.4 Secondary Indexes : 80

10.5 Data-Only Locking : 81

10.6 Cursor Stability Locking : 81

10.7 Lock Escalation : 82

10.8 Operations Required by the Implementation of Locking Pro-

cotols : 82

10.9 Implementation of Fine-Granularity Updates : : : : : : : : : 83

xi

10.10Concurrent Access to Main-Memory Data Structures : : : : : 85

10.11Underlying B-Tree : 86

10.12Supporting Both Read Next and Read Previous : : : : : : : : 87

10.13Pseudocode for the Locking Protocols : : : : : : : : : : : : : 87

10.13.1 Read Unique : 87

10.13.2 Read Next : 88

10.13.3 Insert : 88

10.13.4Delete : 88

10.13.5Update : 89

10.14Pseudocode for the Fine-Granularity Update Level : : : : : : 89

10.14.1 Read CC : 89

10.14.2 Release Interval : 90

10.14.3 Insert : 90

10.14.4Delete : 90

10.14.5Update : 91

10.15Potential Optimizations : 91

11 Snapshots, Read-Only Transactions, and On-The-Fly Multi-

Level Incremental Dumping 93

11.1 Introduction : 93

11.2 Freeing Physical Pages : 94

11.3 Dropping Snapshots : 95

11.3.1 Change Sets : 95

11.3.2 Timestamps in Page Table Entries : : : : : : : : : : : 96

11.4 Modifying Snapshots : 97

11.4.1 The Logical Free List : : : : : : : : : : : : : : : : : : 99

11.4.2 Other Main Memory Data Structures : : : : : : : : : 101

11.5 Permanent Snapshots and Versions : : : : : : : : : : : : : : : 101

11.6 Applications : 103

11.6.1 Read-Only Transactions : : : : : : : : : : : : : : : : : 103

11.6.2 On-The-Fly Multi-Level Incremental Dumping : : : : 103

11.7 Modi�able Snapshots : 105

12 Write Optimizations 107

12.1 Potential Speedup from Sequential Writes : : : : : : : : : : : 107

12.2 Making Writes Sequential : 109

12.3 Disk Space Fragmentation : 111

xii

13 Clustering 113

13.1 Sequential Scans and Large Objects : : : : : : : : : : : : : : 113

13.2 Joins : 115

14 Media Recovery 117

14.1 Mirroring : 117

14.2 Recovery Procedures : 118

14.3 RAID : 119

15 Two-Phase Commit 121

15.1 First Phase of Commit : 122

15.2 Second Phase : 122

15.3 Crash Recovery : 122

16 Miscellaneous Optimizations 125

16.1 Page Table Translation Lookaside Bu�er : : : : : : : : : : : : 125

16.2 Storing Write Hotspots in the Page Table Pointer : : : : : : : 126

III Conclusion 127

17 Conclusion and Further Research 129

xiii

xiv

List of Figures

1.1 A database management system. : : : : : : : : : : : : : : : : 4

3.1 A distributed database management system. : : : : : : : : : : 21

7.1 The shadow paging �le structure. : : : : : : : : : : : : : : : : 51

8.1 The lifetime of a transaction. : : : : : : : : : : : : : : : : : : 56

9.1 Layers of the Shadows system around the implementation of

concurrent transactions and �ne-granularity locking. : : : : : 64

10.1 Layers of the Shadows system around the implementation of

B-tree management. : 76

10.2 Data structure for storing �ne-granularity changes for B-trees. 84

11.1 Snapshots represent consistent database states as of some time

in the past. : 94

11.2 Pseudocode for dropping a snapshot using timestamps to de-

termine which pages to free. timestamp on level() returns

the timestamp of the page table entry corresponding to the

speci�ed page on the speci�ed level of the page table (if the

requested level is higher than the depth of the page table, it

returns the timestamp of the page table pointer). Its imple-

mentation would be incremental in practice, exploiting infor-

mation from the previous call. : : : : : : : : : : : : : : : : : : 98

11.3 Versions of a database form a tree. Implicit snapshots are

retained of all forking points. : : : : : : : : : : : : : : : : : : 99

11.4 The logical free list data structure and its reference counts in

the presence of multiple snapshots. : : : : : : : : : : : : : : : 100

11.5 File structure with a master pointer and multiple versions. : : 102

xv

12.1 Speedup factor F for di�erent page sizes S and transfer lengths

N . : 109

13.1 Worst-case fragmentation cost factor C for di�erent page sizes

N

psz

and object sizes S. : 114

xvi

List of Tables

4.1 Compatibility matrix for granular lock requests [33, p. 408] . 31

12.1 Limit of potential speedup F as N ! 1 for di�erent page

sizes S. : 108

xvii

Part I

Introduction

1

Chapter 1

Database Management

A database management system (DBMS) is a set of computer programs

used to manage (access, update, and organize) a collection of data [46]. The

collection of data is called the database. The primary goal of a DBMS is

to provide an environment that is both convenient and e�cient to use in

retrieving information from and storing information into the database.

Database systems are designed to manage large bodies of information.

The management of data involves both the de�nition of structures for the

storage of information and the provision of mechanisms for the manipulation

of information. In addition, a database system must provide for the safety of

the information stored in the database, despite system crashes or attempts

at unauthorized access. The system must also coordinate concurrent use of

the data by multiple users to avoid anomalous results. Figure 1.1 gives an

overview of the setting.

1.1 The Need for General-Purpose Database Man-

agement Systems

General-purpose database systems were designed to answer to a number of

compelling application demands:

� Data redundancy and inconsistency. Since �les and programs

used to store and access data are created over a long period of time by

a large number of programmers, the same piece of information may get

duplicated in several places. This redundancy results in higher storage

3

4 CHAPTER 1. DATABASE MANAGEMENT

DBMS

Data

Files

Application

Application

Application

Users

Figure 1.1: A database management system.

and access cost as well as potential for data inconsistency (that is, the

various copies may no longer agree).

� Di�culty in accessing data. Sometimes there is a need to process

unusual queries for which it is not possible to prepare application pro-

grams in advance. A general mechanism for formulating such queries

is needed. This is not practical if each piece of data is managed by a

separate set of programs, each with its own representation and access

methods for the data.

� Data isolation. Since data is scattered in a number of �les, and

�les may be in di�erent formats, it is di�cult to write new application

programs to perform queries which require combining information from

several �les.

� Multiple users. Most large systems must support many, often hun-

dreds or thousands, concurrent users with a response time of at most

a few seconds. Since some programs need to update several pieces of

information, inconsistencies and anomalies can result if the order of

updates is not carefully controlled.

1.2. DATA ABSTRACTION 5

� Security. Not every user of a system is allowed to see all of the data.

� Data integrity. The data values stored in the database must satisfy

certain consistency constraints. The constraints often change over the

lifetime of the system. It would be very di�cult to change the con-

straints if the change would have to be propagated to every application

program in the system.

� Maintenance. New application programs are written and old ones

are modi�ed all the time by a large number of programmers. Many

of these programs need to access and modify a common repository of

data. If each program was to access the data in its own way, many

programmers would write code to perform very similar functions, and

most likely some of the implementations would eventually be incom-

patible with the others. A single su�ciently general database manage-

ment system is needed to keep the system maintainable and to help

eliminate duplicate work.

These reasons, among others, have lead to the development of general-

purpose database management systems. These systems provide a suitable

abstraction for all data stored in the system, and provide a set of facili-

ties that allow performing all of the required operations on the data in a

consistent manner.

1.2 Data Abstraction

There are several types of general-purpose database systems for di�erent ap-

plication areas. Di�erent applications have di�erent needs, and the systems

di�er in the abstractions and facilities that they provide.

The relational data model is the most widely used abstraction of data.

All data and relationships among data are represented by a collection of

tables, each of which has a number of columns with unique names. There are

many commercial database systems based on the relational model, including

Oracle, DB2, RDB, Informix, Ingres, Sybase, and many others.

The network data model represents data by records (in the Pascal or

PL/1 sense), and relationships by links between records. This model is used

in some older database management systems.

The hierarchial data model resembles the network model, but the rela-

tionships among data are limited to trees (hierarchies) instead of arbitrary

graphs. The best known commercial system using this model is IMS.

6 CHAPTER 1. DATABASE MANAGEMENT

Object-oriented data models are used in many unconventional database

applications, such as engineering databases, CAD, and modelling [7]. The

database contains a number of objects and their relationships. There are

several di�erent object oriented data models; for more information see [13].

An important issue in data abstraction is the separation of the logical

data contained in the database from the physical representation used by the

database. The physical representation is not visible to application programs,

and is only known to the database management system. Only the logical

contents of the database are visible to applications.

The logical structure of the database is described by a database schema.

The schema describes the structure of the data in the database as it is seen

by applications. Additional information may be given to allow the database

management system to optimize the physical representation of the data for

the expected types of queries.)

Additionally, many database systems support views, which is an abstrac-

tion of the schema. A view looks like a logical database schema to an ap-

plication, and maps all application requests to the actual database schema.

Typically views are used to provide access to a subset of the entire database;

however, arbitrary computations are allowed in creating a view.

1.3 Requirements for a Database Management

System

A general-purpose database system must satisfy a large number of applica-

tion requirements.

� Access to the data. The system must provide su�cient query facil-

ities so that the required data can be located and retrieved e�ciently.

� Modi�cation of the data. The system must provide su�cient fa-

cilities to update existing data, to add new data, and to remove old

data.

� Concurrency control. The system must coordinate the activities

of multiple concurrent users and ensure that concurrent use does not

result in conconsistencies or anomalies.

� Fault recovery. All computer systems (like any mechanical systems)

are subject to failure. There are a variety of causes of such failure,

1.4. TRANSACTIONS AND ATOMICITY 7

including disk crashes, power failures, component failures, earthquakes,

and acts of war. The database system must protect the data against

failures. This will be discussed in more detail in Section 2.

� Security enforcement. The system must provide facilities for con-

trolling which users can access and modify which data.

� Integrity enforcement. It must be possible to specify integrity con-

straints for data stored in the database, and the database management

system must enforce the constraints.

� Physical storage of data. The database management system inter-

acts with the operating system to control the physical devices and �les

used for storing the data.

1.4 Transactions and Atomicity

A transaction is an abstraction which provides an easy-to-use basis for con-

currency control and recovery. A transaction has the following properties.

� Atomicity. A transaction is either executed entirely or not at all.

There is no possibility of the results of a partially executed transaction

ever being visible in the database.

� Consistency. Assuming the database satis�es all integrity constraints

before a transaction is executed, it will satisfy them after the transac-

tion has executed (or otherwise the transaction will be rolled back and

the e�ect is as if it had never been started).

� Isolation. Two transactions running in parallel have the illusion that

there is no concurrency. It appears that the system runs one transac-

tion at a time.

� Durability. Once the database system has reported to an application

that a transaction has been executed, there is no way that the results of

the transaction could disappear from the database except by executing

another transaction that explicitly undoes the e�ects of the earlier

transaction.

8 CHAPTER 1. DATABASE MANAGEMENT

Chapter 2

Fault-Tolerant Computing

Reliable systems have become extremely important in the modern society

as more and more functions are automated. Banks, credit card companies,

insurance companies, warehouses, nuclear power plants, aerospace applica-

tions, military applications, industrial applications, vehicle control, and life

support equipment are just some examples.

Many systems are critical for normal operation of the society. For ex-

ample, the entire economy would very quickly collapse if bank and credit

card computer systems ceased to operate. In other applications, such as

airplane control, nuclear weapons systems, industrial control, and hospital

equipment, failure of the embedded computer system may lead to immediate

loss of human life and large scale environmental catastrophes.

Large systems are designed to be realiable and fault tolerant. Some com-

ponent of the system will inevitably eventually fail. People go crazy, com-

puters malfunction, turbines break, or an earthquake destroys the factory.

Large systems are designed to tolerate component failures, and minimize the

e�ects of such failures.

Reliability and safety must be considered at all levels of system design.

Redundancy, failure detection, damage control, and repair are some of the

general methods used to achieve these goals.

Most large systems contain embedded computers, often hundreds or

thousands of them. Computers have central roles in data storage, commu-

nications, and control. The computer system is often the most critical part

of a large system, causing gross unavailability of service if it fails. Building

reliable computer systems has become extremely important.

This section will discuss the basic terminology of fault-tolerant com-

9

10 CHAPTER 2. FAULT-TOLERANT COMPUTING

puting, introduce some of the basic methodology, and relate the �eld of

databases to building reliable computer systems in general.

2.1 Failures, Reliability, Failfast, Masking, Mod-

ularity

A system can be viewed as a module. Modules are composed of submodules,

which in turn are composed of submodules. Each module has an ideal spec-

i�ed behavior and an observed behavior [33, p. 98]. A failure occurs when

the observed behavior deviates from the speci�ed behavior. A failure occurs

because of an error, or a defect, in the module. The cause of the error is a

fault. The time between the occurrence of the error and the resulting failure

is the error latency. When the error causes a failure, it becomes e�ective;

before that, the error is latent.

For example, a programmer's mistake is a fault. It creates a latent error

in the software. When the erroneous code is executed with certain data val-

ues, it causes a failure and the error becomes e�ective. As a second example,

a cosmic ray (fault) may discharge a memory cell, causing a memory error.

When the memory is read, it produces the wrong answer (memory failure),

and the error becomes e�ective.

The observed module behavior alternates between service accomplish-

ment, when the module acts as speci�ed, and service interruption, when the

behavior of the module deviates from the speci�ed behavior.

Module reliability measures the time from an initial instant to the next

failure event. Reliability is statistically quanti�ed as mean-time-to-failure

(MTTF); service interruption is statistically quanti�ed as mean-time-to-

repair (MTTR).

Module availabilitymeasures the ratio of service accomplishment to elaps-

ed time. Module unavailability is statistically quanti�ed as

MTTR

MTTF +MTTR

:

Module reliability can be improved by reducing failures, and failures

can be avoided by valid construction and error correction. Validation can

remove errors during the construction process, thus ensuring that the con-

structed module conforms to the speci�ed module. Since physical compo-

nents fail during operation, validation alone cannot ensure high reliability

or high availability.

2.2. FAULTS AND OUTAGES IN PRACTICE 11

Error correction reduces failures by using redundancy to tolerate faults.

Latent error processing tries to detect and repair latent errors before they

become e�ective. Preventive maintenance is an example of latent error pro-

cessing. E�ective error processing tries to correct the error after it becomes

e�ective.

E�ective error processing can either mask the error or recover from the

error. Masking uses redundant information to deliver the correct service

and to construct a correct new state. Error correcting codes (ECC) used

for electronic, magnetic, and optical storage are examples of masking. Error

recovery denies the requested service and sets the module to an error-free

state.

Faults can be hard or soft. A module with a hard fault will not function

properly until it is repaired. A module with a soft fault appears to be repaired

after the failure, and will not exhibit increased probability of failing again

after the failure. Soft faults are also known as transient or intermittent faults.

For example, timing faults (that is, failing to respond within the speci�ed

time constraints) are often soft.

A module is failfast if it stops execution when it detects a fault (failstop

is sometimes used to mean the same thing). Failfast behavior is important

because latent errors after a fault can cause the system to fail again later.

Failing fast minimizes latent errors.

Modules are built recursively. That is, the system is a module composed

of modules, which in turn are composed of modules, and so on down to the

elementary particles. The goal is to start with ordinary hardware, organize it

into failfast hardware and software modules, and build up a system that has

no faults and, accordingly, is highly available. This goal can be approached

with the controlled use of redundancy and with techniques that allow a

module to mask the failures of its component modules.

2.2 Faults and Outages in Practice

In the early days of computing computers used to fail every day. However,

nowadays it is common for systems (workstations, disks, processors) to have

mean-time-to-failure (MTTF) ratings of 100 000 hours (about ten years) or

more. Systems consisting of hundreds or thousands of such components can

o�er MTTF of one month if nothing special is done, or 100 years if great

care is taken.

Empirical studies on the causes of service outages indicate that very few

12 CHAPTER 2. FAULT-TOLERANT COMPUTING

outages are caused by hardware faults [33, p. 100]. Fault tolerance masks

most hardware faults. If a fault-tolerant system fails due to a hardware error,

there is probably also a software error (the software should have masked the

hardware fault), or an operator error (the operator did not initiate repair),

or a maintenance error (all the standby spares were broken and had not been

repaired), or an environmental failure (the machine room was on �re).

Service outages can be traced to a few broad categories of causes:

� Environment. Facilities failures such as the machine room, cool-

ing, external power, communication lines, weather, earthquakes, �res,

oods, acts of war, and sabotage.

� Operations. All the procedures and activities of system administra-

tion, con�guration, and system operation.

� Maintenance. All the procedures and activities performed to main-

tain and repair the hardware and facilities. This does not include

software maintenance.

� Hardware. The physical devices, exclusive of environmental support.

� Software. All the programs in the system.

� Something else. Examples include labor disputes (strikes) and shut-

downs due to administrative decisions (e.g. stock exchange shutdown

at panic).

Empirical studies indicate that a large fraction of outages is caused by

reasons other than hardware or software [33, p. 102]. This emphasizes the

importance of considering all aspects of availability when designing fault-

tolerant systems.

Hardware designers have developed simple and e�ective ways of making

arbitrarily reliable hardware, and software designers have developed ways to

mask most of the remaining hardware faults. Due to the hardware getting

very cheap, these techniques are becoming standard.

There is a clear trend toward using software to mask hardware, envi-

ronmental, operations, and maintenance faults. As all the other faults are

masked, the software remains. Additionally, millions of new lines of code are

being added as new features are added and more functions are automated.

Studies indicate that production programs engineered using the best

techniques available (structured programming, walk-throughs, careful code

2.3. TRANSACTIONS AND SOFTWARE FAULT TOLERANCE 13

inspections, extensive quality assurance, alpha and beta testing) have two

or three bugs per thousand lines of code. Using this rule of thumb, a few

million lines of code will have several thousand bugs.

Writing better software is possible but extremely expensive. For example,

the space shuttle software costs USD 5 000 per line of code, and it still

contains gross errors [33, p. 116]. In practice no-one has enough money to

build perfect programs unless someone �rst builds a better programmer.

Few people believe that design bugs can be totally eliminated. Good

speci�cations, good design methodology, good tools, good management, and

good designers are all essential to high-quality software, but even after these

improvements there will still be a residue of problems.

The relative proportion of software faults has been rapidly increasing in

the recent years [33, p. 104]. Techniques for dealing with software faults are

getting extremely important.

� N-version programming is a method where the module is con-

structed by several independent groups of designers. All of these mod-

ules are installed in the actual system, and they take a majority vote

for each answer. The hope is that the design diversity should mask

many failures. However, in practice the modules tend to have related

failures, this method is very expensive to implement since at least three

implementations of the system must be built, and it is di�cult to repair

a module once it has failed.

� Transactions with ACID properties provide a way of writing the pro-

gram as a sequence of state transitions with consistency checks. At

the end of each transaction, if the consistency checks are not met, the

transaction is aborted and restarted. Rerunning the transaction the

next time should usually work.

2.3 Transactions and Software Fault Tolerance

The theory behind using transactions for software fault tolerance is that most

software failures are Heisenbugs, that is, transient software errors that only

appear occasionally and are related to timing or overload. Heisenbugs are

contrasted to Bohrbugs which have deterministic behavior and occur every

time the program is executed with the given data [33, p. 117]

Studies indicate the ratio of hard software faults (Bohrbugs) to soft faults

14 CHAPTER 2. FAULT-TOLERANT COMPUTING

(Heisenbugs) is of the order of 1:100. Masking all transient faults thus im-

proves MTTF by a factor 100.

Many existing large software systems have data structure repair programs

that traverse data structures, looking for inconsistencies, and heuristically

repair any inconsistencies they �nd. In e�ect, these programs try to mask

latent errors left behind by some Heisenbug. Even though this may sound

as a very questionable approach, sometimes leading to new problems due to

erroneous corrections, this has been reported to improve system mean times

to failure by an order of magnitude.

The alternative approach of restarting the system at the �rst sign of

trouble makes things much worse: the system will be crashing all the time.

Transactions make a desired compromise: with their ACID properties, they

are perfect for masking the e�ects of Heisenbugs.

� Atomicity. The e�ects of individual transactions can be discarded

by rolling back the transaction, providing a �ne granularity of failure.

There is no need to restart the entire system.

� Consistency. Since the previous system state was a result of exe-

cuting some transaction it is known to be a consistent system state

satisfying all state invariants. If a Heisenbug causes the transaction to

end up in an inconsistent state, the system will automatically abort

the transaction, repairing the e�ects of the Heisenbug.

� Isolation. Each program is isolated from the concurrent activity of

others and, consequently, from the failure of others.

� Durability. No committed work is lost by recovering from later faults.

Heisenbugs are thus detected and repaired automatically without dis-

turbing the rest of the system. The failed operation can be restarted, and

with all likelihood it will succeed on the second try. Even if a transaction

contains a Bohrbug, the correct distributed system state will be reconstruc-

tured by the transaction undo, and only that operation will fail.

The programming style of failfast software designs is called defensive

programming. Every software module should check all its inputs and raise

an exception if the inputs are incorrect. The result should be checked after

every subroutine call. When a module detects an error, it can either correct

the problem, or return an error to the higher level, eventually causing a

transaction abort or some other coarse form of recovery.

2.4. REAL, UNPROTECTED, AND PROTECTED ACTIONS 15

Failfast programming is very useful when using process pairs or system

pairs, where the other process or system acts as a hot standby and takes

over should the primary process or system fail.

If Heisenbugs are the dominant form of software faults, then failfast plus

transactions plus system pairs result in software fault tolerance [33, p. 119].

Geographically remote system pairs tolerate not just Heisenbugs, but envi-

ronmental faults, operator faults, maintenance faults, and hardware faults

as well.

2.4 Real, Unprotected, and Protected Actions

It is useful to distinguish between three kinds of actions that a system may

perform [33, p. 163].

� Real actions. These actions a�ect the real, physical world in a way

that may be hard or impossible to reverse. Drilling a hole is one

example; �ring a missile is another.

� Unprotected actions. These actions lack all of the ACID properties

except consistency (and even that assuming the software controlling

the action is correct). Unprotected actions are not atomic, and their

e�ects cannot be depended upon, nor can several unprotected actions

be executed safely in parallel on the grounds that they would execute

correctly when run separately. Almost anything can fail in an unpro-

tected action. An example is a single disk write.

� Protected actions. These actions do not externalize their results

before they are completely done. Their updates are controlled, and are

rolled back if anything goes wrong before normal end, and once they

have reached their normal end, there will be no unilateral rollback.

Protected actions have the ACID properties.

Protected actions can be built from unprotected actions by carefully

controlling the order of execution and adding new actions to implement

the ACID properties.

In general it is very di�cult to turn unprotected actions into protected

actions. Assumptions and simpli�cations need to be made about the kinds

of failures that can occur while executing an unprotected action.

16 CHAPTER 2. FAULT-TOLERANT COMPUTING

Without additional assumptions an unprotected action may execute fully,

partially, not at all, or it may fail catastrophically and perform arbitrary ac-

tions. Arbitrary actions (e.g., polymorphing the CPU into a nuclear bomb

and exploding it) cannot be handled by any mechanisms. Instead, the ac-

tions that are used in implementing protected actions must have well-de�ned

failure modes. This involves both assumptions about the behavior of the ac-

tion in the worst case, and techniques for explicitly limiting the possible

e�ects the action can have if it fails.

If an action is to be used in constructing a protected action, it must

have well-de�ned semantics. All of the possible end results of executing the

action must be speci�ed (with perhaps a reservation \with a probability

of once every million years it will do something else", which causes the

construction of the atomic action to be invalid with a some probability).

Typically this is done by specifying the correct end result of the action and

the state variables which may have unde�ned values if the action is not

completed. An important question is also whether the enclosing action can

determine reliably whether the action was performed successfully.

All unprotected actions have a �nite probability of failing. Since many

unprotected actions can fail at the same time, it is not possible to build

in�nitely reliable protected actions. All protected actions have a �nite prob-

ability of failing to implement the ACID properties. In practice this proba-

bility can be made smaller and smaller by adding more and more redundancy

and fault tolerance to the system.

In real systems, some actions can never be made protected since real

systems deal with irreversible real actions. A real system must contain some

unprotected components. However, complexity and fault tolerance are much

more manageable when protected actions are used.

2.5 Spheres of Control

Spheres of control [20, 33] are a framework for describing and implementing

protected actions. Atomicity is achieved by enclosing a set of actions inside

a sphere of control, which as a whole is executed atomically. Spheres of

control can be created dynamically; that is, it is possible to enclose one or

more spheres of control inside a larger sphere of control at any time to make

their execution collectively atomic.

The spheres of control framework can be used to describe dependencies

both before they occur (the related actions are enclosed in a sphere of control

2.5. DATABASE SYSTEM AS PART ... 17

before they are executed) and after they occur. Controlling dependencies

afterwards e�ectively involves creating a new sphere of control which encloses

all a�ected actions. For example, suppose some action �nds a problem during

its processing. One can then trace back in history which action created the

invalid data. One then traces forward in time to �nd everyone who has used

data produced by the a�ected actions. All of these actions are enclosed in a

dynamically created sphere of control, which allows committing or aborting

them as a whole.

Spheres of control are primarily a theoretical framework for describing

dependencies. It is not directly used in applications; because of its generality

(especially tracing back in history) its implementation would be very ine�-

cient. It is primarily a notation for expressing the dependencies of control

that are relevant for the application.

2.6 Database System as Part of a Reliable Com-

puter System

Database systems implement atomic transactions for manipulating data.

This is closely related to the notion of protected actions: the individual

data manipulation operations are unprotected actions, and transactions turn

them into protected actions.

Many large systems (e.g. telephone exchanges) have very complicated

internal data structures, have many conccurrent users, are typically dis-

tributed, and must be highly reliable. The use of a well-de�ned database

system for managing the shared data in such a system makes the complexity

of the system more manageable.

Most large computer systems require reliable processing of data. For

example, large banks have thousands of terminals, ATMs, and hundreds of

branches. All of these access and update the collective information con-

currently. If the computer system maintaining the balances of accounts

becomes unavailable or looses data, the whole bank must soon stop oper-

ation. It is thus extremely important for the bank and its customers that

its computer system works reliably. This is a very typical example where

databases are used. The same problem can be seen on a smaller scale with

warehouses, retail chains, accounting, marketing, and many other �elds of

business. Typically large systems have more strict requirements for availabil-

ity and reliability, whereas many small systems can tolerate some amount of

unavailability or data loss, but require low cost.

18 CHAPTER 2. FAULT-TOLERANT COMPUTING

Transactions and database management are the key technology in build-

ing large data-intensive computer systems. On the whole, database and

transaction technology has become one of immense importance in the mod-

ern society. The current role of computers in the society is, to a large extent,

possible because of database technology. Most often database technology is

hidden deep inside the system.

Chapter 3

Transaction Models

There are several di�erent abstractions for transactions [33, pp. 159{235].

Di�erent abstractions are appropriate in di�erent applications. Some of the

transaction models are widely used in applications; some are currently only

ideas on paper.

3.1 Flat Transactions

A
at transaction is a collection of operations (queries, updates), which as

a whole is executed with all the ACID properties.

Flat transactions are the \basic" kind of transactions. They are sup-

ported by virtually all database management systems, and in many systems

they are the only kind of transactions supported. A typical example of a
at

transaction is the Debit/Credit transaction.

1

Flat transactions are well motivated by their simplicity and usability in

many applications. However, there are applications for which
at trans-

actions are not su�cient, and attempts have been made for extending the

transaction concept. Such extensions often result in weakening some of the

properties of the basic transaction, and thus lead to increased complexity

in writing application programs. Care must be taken in selecting the most

appropriate transaction model for each application.

1

The Debit/Credit transaction [5] changes the balance of an account, the balance of

the corresponding branch, and the balance of the teller. All of these updates must be done

atomically as a whole.

19

20 CHAPTER 3. TRANSACTION MODELS

3.2 Flat Transactions with Savepoints

Flat transactions can be extended by permitting the application to create

savepoints [32] and optionally roll back to a previous savepoint.

A savepoint is a saved state of the transaction (usually created by a SAVE

WORK statement). The application is given a handle to the savepoint. The

application is permitted to create any number of savepoints. The application

can later use the ROLLBACK WORK statement to restore a previous saved

state (also invalidating all savepoints that were made after the savepoint

that was rolled back to).

Savepoints are useful in implementing SQL statement-level atomicity,

and in applications where it is desirable to roll back only part of the trans-

action when an operation fails.

3.3 Distributed Transactions

A transaction must often update data on several nodes on a network (Figure

3.1). Even if the transaction, from the application's point of view, is a

simple
at transaction, in a distributed database the data may be located

on several nodes, causing the system to implement the simple transaction as

a distributed transaction.

A distributed transaction must guarantee global consistency. This means

that the transaction must be locally consistent on each node, and addition-

ally must be globally serializable.

A distributed transaction commits atomically as a whole. Either the

subtransactions on di�erent hosts all commit, or none of them commits.

Two-phase commit [33, pp. 562{573] is usually used for implementing

distributed transactions. The idea is that when the global transaction wants

to commit, it asks all of its subtransactions to prepare for commitment. Each

node then saves the state of the subtransaction in stable storage so that it

can be restored even after a crash. When all nodes have successfully prepared

for commitment, the coordinator decides to commit, records the decision in

stable storage, and asks all participating nodes to execute the commitment.

The transaction is aborted if any node cannot successfully prepare for the

commit.

3.3. DISTRIBUTED TRANSACTIONS 21

DBMS

Node

Files

Disks

DBMS

Node

Files

Disks

DBMS

Node

Files

Disks

Application

Figure 3.1: A distributed database management system.

22 CHAPTER 3. TRANSACTION MODELS

3.4 Nested Transactions

A nested transaction [74] is a tree of transactions, the subtrees of which

are either nested or
at transactions. Transactions at the leaf level are
at

transactions. The distance from the root to the leaves can be di�erent for

di�erent parts of the tree. The transaction at the root of the tree is called the

top-level transaction; the others are called subtransactions. A transaction's

predecessor in the tree is called a parent; a subtransaction at the next lower

level is called a child.

A subtransaction can either commit or roll back. Its commit will not take

e�ect, though, unless the parent transaction commits. Any subtransaction

can �nally commit only if the top-level transaction commits.

The rollback of a transaction anywhere in the tree causes all its subtrans-

actions to roll back. For this reason, subtransactions have only A, C, and I,

but not D of ACID.

All changes made by a subtransaction become visible to the parent trans-

action upon the subtransaction's commit. Objects held by a parent transac-

tion can be accessible to its subtransactions. Changes made by a subtrans-

action are not visible to its siblings, in case they execute concurrently.

In the original nested transaction model [74] only the leaf-level transac-

tions could do actual work (access the database or send messages). Higher-

level transactions only organize the control
ow and determine when to in-

voke each subtransaction.

In a nested transaction, all locks acquired by a subtransaction are counter-

inherited by (transferred to) the parent transaction when the subtransaction

commits. In other words, the objects that have been locked by the subtrans-

action are kept locked after its commit, but the parent transaction is made

the owner of the locks. Conversely, a parent transaction can give locks on

objects to a subtransaction (locks are inherited by the subtransaction) at the

moment the subtransaction starts. This can be done selectively, or all of the

parent's locks can be given to the subtransaction. If a subtransaction aborts,

all locks that were newly acquired by that subtransaction are dropped, but

those that were given to it by the parent are returned to the parent.

Nested transactions are currently supported by relatively few commer-

cial systems. However, internally many systems use similar mechanisms to

implement things like the atomicity of SQL update statements. Recently,

some systems (most notably the Camelot system [27] and its commercial

version Transarc Encina) have used nested transactions for implementing

transactional programming languages.

3.5. OTHER TRANSACTION MODELS 23

Nested transactions are often used in connection with distributed systems

and distributed transactions.

3.5 Other Transaction Models

3.5.1 Chained Transactions

The idea of chained transactions is that rather than taking (volatile) save-

points, the application program commits what it has done so far, thereby

waiving its rights to do a rollback; at the same time, however, it is required to

stay inside the transaction. In particular, it wants to keep locks on database

objects and to keep its SQL cursors open and in their existing positions.

It is possible to use chained transactions to commit one transaction,

release all database objects that are no longer needed, and pass on the pro-

cessing context that is still required to the next transaction that is implicitly

started.

3.5.2 Multi-Level Transactions

Multi-level transactions [61] are like nested transactions, but some subtrans-

actions are allowed to permanently commit their changes to the database

(also called pre-commit). This gives up the possibility of unilateral rollback

of the updates. However, compensating transactions are used to semanti-

cally reverse what the committed subtransaction has done in case the parent

decides (or is forced) to roll back. Since these commit-compensation depen-

dencies are enforced at all levels of nesting, it is guaranteed that all updates

can be revoked, even if the top-level transaction fails and a whole number

of subtransactions have committed before.

Multi-level transactions are very useful because they allow committing

(and releasing) data before the top-level transaction has executed. However,

they assume the existence of compensating transactions. This places restric-

tions on the organization of subtransactions [33, pp. 203{210]. Multi-level

transactions provide all the ACID properties for the top-level transaction.

3.5.3 Long-Lived Transactions

All of the transaction models presented so far are problematic for very large

update transactions (for example, updating all of a bank's million accounts at

24 CHAPTER 3. TRANSACTION MODELS

the same time) [33]. If the entire operation is performed as a
at transaction,

very much work will be lost if the transaction aborts.

One approach for long-lived transactions is splitting the operation into a

number of mini-batches, each of which executes a part of the whole operation

and saves information about what has been done so far (as well as any other

relevant context information) in the database. If the system crashes, it is

possible to pick up the context from the database and continue the operation.

3.5.4 Sagas

Sagas [29] are an attempt towards providing system support for the execu-

tion of mini-batch-like sequences of transactions. Sagas are an extension of

chained transactions: each subtransaction has a compensating transaction,

making the entire chain atomic, and the term saga refers to the entire chain.

3.5.5 Cooperating Transactions

The idea of cooperating transactions [75] is that a transaction may request an

object from some other transaction (knowing that it is only preliminary), use

the object for reading, and then return the object to the original transaction

when needed. Cooperative transactions have been suggested for applications

like computer-aided design (CAD).

Chapter 4

Concurrency Control

The purpose of concurrency control in a database system is to coordinate the

activities of multiple concurrent users [12, 33, 46]. It provides the isolation

property of transactions (and has an important role in implementing the

other properties).

4.1 Serializability

A set of transactions is said to be executed serially if they are executed

one transaction at a time in any order [12, 33]. However, normally many

transactions are executed in parallel, and each transaction consists of several

operations.

The execution of a set of transactions is said to be serializable if the

result of the execution (the state of the database, as seen by the transactions

themselves and by future transactions which may come later) is equal to some

serial execution of the transactions.

Serializability is equivalent to the isolation property of transactions, and

it is used as the correctness criterion for concurrency control. All valid

concurrency control methods must ensure that only serializable executions

are possible.

There are three anomalies which can appear if the concurrency control

method does not guarantee serializability.

� A lost update happens when two transactions read a value, then both

compute a new value, and write the value. One of the updates is not

re
ected in the �nal value.

25

26 CHAPTER 4. CONCURRENCY CONTROL

� A dirty read happens when a transaction reads an object previously

written by another transaction, and then the other transaction makes

further changes to the object (either by explicit changes or by rolling

back). The version read by the transaction may be inconsistent, be-

cause it is not the �nal (committed) value of the object.

� Unrepeatable read is when a transaction reads an object twice, without

changing it in the meanwhile, and gets two di�erent answers. This may

happen if another transaction modi�es the object between the reads.

This anomality is also called the phantom problem.

It can be shown that these three forms of inconsistency are the only

possible anomalies caused by concurrency. If they can be prevented, the

transaction will appear to run in isolation [33, p. 381].

4.2 Recoverability

A concurrency control method must guarantee that the recovery method

can undo the e�ects of aborting transactions without violating durability.

In particular, no transaction can commit before all the data that it has read

has been committed. If this requirement were not satis�ed, the transaction

creating the data could abort, but then it would no longer be possible to

undo the e�ects of the aborting transaction, because they would already be

part of the output of a committed transaction, and removing the e�ects at

that point would violate durability.

A concurrency control method that satis�es this requirement is called

recoverable [12, pp. 6{7]. All practical concurrency control methods must

satisfy this requirement.

4.3 Avoiding Cascading Aborts

If a concurrency control method allows reading data that has not yet been

committed, it must keep track of which transactions depend on which trans-

actions, and prevent transactions from committing before all transactions

they depend on have committed. Consequently, if a transaction is aborted,

all transactions that depend on it must be aborted as well. This phenomenon

is called cascading abort.

A concurrency control method can be recoverable and allow cascading

aborts. However, in many practical systems it is desirable to avoid cascading

4.4. STRICT EXECUTIONS 27

aborts. A method which does not permit other transactions to read uncom-

mitted data avoids cascading aborts [12, pp. 6{9], and there is no need to

keep track of dependencies between transactions.

4.4 Strict Executions

Many recovery methods use before images [33, p. 162] for rolling back

aborted transactions. If multiple transactions are allowed to write to the

same data item before the others have either committed or aborted, it is

possible that before image logging cannot be used for recovery: when the

transactions all abort, the �nal value will be the before image of the last

transaction that aborted, which may not be the original value of the data

item.

These problems can be avoided by requiring that the execution of a write

operation be delayed until all transactions that have previously written the

same data item have either committed or aborted.

Executions that delay both reads and writes of a data item until all

transactions that have written that data item have either committed or

aborted are called strict [12, pp. 9{11].

Strict executions are always recoverable and avoid cascading aborts. Re-

coverability is a fundamental requirement which makes recovery possible.

Avoiding cascading aborts and strictness are pragmatic requirements im-

posed by many recovery methods (but not all) for performance reasons. The

recovery method described in this thesis purposely neither avoids cascading

aborts nor is strict.

4.5 Degrees of Isolation

Full isolation is not appropriate for some practical applications due to perfor-

mance reasons. Many database systems support several degrees of isolation

[33, pp. 397{403].

Degree 0. The transaction will not overwrite another transaction's data if

the other transaction runs at degree 1 or higher.

Degree 1. The transaction has no lost updates.

Degree 2. The transaction has no lost updates and no dirty reads.

28 CHAPTER 4. CONCURRENCY CONTROL

Degree 3. The transaction has no lost updates and has repeatable reads

(which also implies no dirty reads). This is \true" isolation.

The SQL standard requires all systems to support Degree 3 isolation (full

serializability). However, many systems use Degree 2 isolation to get better

performance. This is called cursor stability. Level 1 is called browse access.

It permits the application to scan through a table without disturbing other

transactions; however, it may get inconsistent results.

4.6 Two-Phase Locking

Concurrency control is usually implemented using locks. Locks are typically

identi�ed by a name (which may be derived from the page number, record

identi�er, key value, or some other property of the object being locked).

Locks can be acquired in shared mode, which means that several transactions

can hold shared locks on the same object, or in exclusive mode, which means

that no other transaction can hold any lock on the same object. Typically a

transaction must obtain a shared lock before it can read an object, and an

exclusive lock before it can modify the object.

Locks must be acquired and released in a controlled manner to guarantee

serializability. Which locks are acquired and released, and when, is controlled

by the locking protocol.

The most common locking protocol is two-phase locking. The idea is to

divide the transaction into two phases: the growing phase and the shrinking

phase. New locks can be obtained only in the growing phase, and locks

can be released only in the shrinking phase. Together with obtaining a

shared lock before reads and an exclusive lock before updates this guarantees

serializability [12].

In practical systems it is often not possible to know which objects the

transaction is going to access before commit until the transaction has ac-

tually requested to commit. This means that the shrinking phase cannot

begin until after the transaction has requested to commit. This variant of

two-phase locking is called strict two-phase locking [12].

4.7 Deadlocks

If a transaction tries to obtain a lock which is held by another transaction

in a con
icting mode, the transaction will have to wait until the other lock

has been released.

4.8. PREDICATE LOCKS 29

Suppose transaction T1 requests and gets an exclusive lock on object

O1. T2 then requests and gets an exclusive lock on O2. T1 then requests

a lock on O2; since there is a con
icting lock, the request blocks. Then,

transaction T2 requests a lock on O1; it blocks as well. Both transactions

are now blocked waiting for each other. This situation is called deadlock.

A deadlock occurs when there is a set of transactions waiting on each

other. A deadlock situation can be detected by constructing a directed

graph called the waits-for graph. The graph has all active transactions as its

vertices; there is an edge in the graph for each lock wait from the waiting

transaction to the owner of the lock being waited on. There is a deadlock if

this graph has a cycle.

A deadlock is typically resolved by aborting one of the transactions par-

ticipating in the deadlock (that is, one of the transactions forming the cycle).

4.8 Predicate Locks

Locking is described in the previous sections as referring to individual ob-

jects. In practice things are not this simple: for example, what are the

objects accessed in a query in a relational database? The transaction reads

the database structure, table headers, and the individual records. Locking

the table headers prevents all insertions and deletions to the table, which

is clearly unacceptable in high-performance systems. If just the records are

locked, other transactions can insert or delete records, and those records

might show up in later queries by the same transaction as phantoms.

Locks on individual records can be used to protect against lost updates

and dirty reads. However, they are inadequate for preventing phantoms.

Locking table headers, on the other hand, severely limits concurrency.

There is a solution called predicate locks [28]. The idea is to lock an

arbitrary subset of the database (as speci�ed by a predicate). When a query

accesses a set of records, it obtains a predicate lock on all the records that

are relevant to the query. This predicate lock prevents phantoms.

Predicate locking requires testing for predicate satis�ability, which is NP-

complete. Direct use of predicate locking is computationally not feasible.

However, it is possible to devise more limited systems that o�er most of the

bene�ts of full predicate locks, yet permit e�cient implementation.

30 CHAPTER 4. CONCURRENCY CONTROL

4.9 Granular Locks

Phantoms raise the issue of locking granularity [33, p. 406{411]. Possi-

ble units of locking are databases, �les, �le subsets, records, �elds within

records, and so on. The choice of the lock granule is a trade-o� between

concurrency and locking overhead. Coarse-granularity locking is appropri-

ate for large transactions, whereas �ne-granularity locking is appropriate for

small transactions. Additionally, some transactions need to lock subsets of

all objects (possibly including objects not (yet) in the database).

Predicate locks permit locking at multiple granularities, as well as locking

arbitrary subsets. The computational complexity of predicate locking can be

overcome by choosing a (possibly large) �xed set of predicates, and forming

a partial order where a \larger" predicate implies all \smaller" predicates.

A lock on a predicate implies a lock on all smaller predicates.

There is are two special lock modes, intention shared and intention ex-

clusive. An intention shared lock is incompatible with exclusive locks, and

an intention exclusive lock is incompatible with shared and exclusive locks.

The intention lock modes are compatible with each other.

All lock requests are constrained so that before a transaction can obtain

a lock on a lower level predicate, it must obtain an appropriate intention

lock on all larger predicates.

This locking protocol is called granular locking or DAG locking. When

the predicates can be ordered in a tree (instead of an arbitrary partial order)

this is called tree locking.

Many systems use special locking for commutative operations. These

operations can be performed in an arbitrary order with the same result.

Such operations are also reversible. A typical example is adding a number

to the value of a �eld. A lock for this kind of operations is called an update

lock, or generally extended lock modes.

Table 4.1 shows typical lock modes and their relationships. A transaction

must obtain an intention lock (IS, IX, or SIX) on the higher level node in

the locking hierarchy before it is allowed to obtain a concrete lock (S, SIX,

U, or X) on a lower level node. A concrete lock in one mode on a high-level

node implies the same lock mode on all lower level nodes covered by the

higher-level node. Lock mode IS permits the transaction to obtain shared

(IS and S) locks on lower level nodes; mode IX permits the transaction to

obtain any lock modes on lower level nodes. Lock mode SIX implies a shared

lock on all lower level nodes covered by the higher-level node, and permits

the transaction to obtain locks on lower level nodes.

4.9. GRANULAR LOCKS 31

Compatibility matrix for granular locks

Granted mode

Requested mode None IS IX S SIX Update X

IS + + + + + - -

IX + + + - - - -

S + + - + - - -

SIX + + - - - - -

U + - - + - - -

X + - - - - - -

Table 4.1: Compatibility matrix for granular lock requests [33, p. 408].

The database system usually does not know how many objects a trans-

action is going to access when the transaction starts. Therefore, it does not

have enough information to select the most appropriate locking granularity

for the transaction. This is usually solved by having the transaction �rst use

�ne-granularity locking, and a coarse-granularity lock is obtained after the

transaction has made a certain number of modi�cations. This is called lock

escalation.

32 CHAPTER 4. CONCURRENCY CONTROL

Chapter 5

Recovery

Recovery provides the atomicity and durability properties of transactions in

the presence of failures. It must guarantee that every transaction is either

executed entirely, or not at all. Additionally it must guarantee that once

commitment has been acknowledged to the application, the transaction will

remain permanent.

One should be speci�c about the circumstances under which a trans-

action is to be atomic and durable. Achieving these properties under the

assumption that the system is functioning normally is fairly easy. Getting

the properties in the presence of system crashes (without any hardware com-

ponents being damaged) requires more e�ort, and the di�culty increases as

more types of failures (disk crashes, �re in the machine room, etc.) are con-

sidered. In most of the following discussion, atomicity and durability are

guaranteed in the presence of system crashes and the loss of at most one

hardware component. Techniques for higher levels of fault tolerance (such

as loss of a machine room) are discussed in Section 5.4.3. Techniques against

situations where a failure goes undetected (that is, the failfast property of

components fails), particularly N-plexing, are discussed in [33].

5.1 Types of Storage

Computers have several types of storage that have di�erent recovery char-

acteristics. Volatile storage (e.g., main memory) loses its contents on power-

down or system restart. Nonvolatile storage keeps its contents during power

failures and normal system restarts. However, it is still susceptible to fail-

ures. Stable storage is an ideal storage type which keeps its contents forever

33

34 CHAPTER 5. RECOVERY

and has the ACID properties. Stable storage can be approximated by stor-

ing the data on several devices with independent failure modes, and using

additional control information to synchronize updates.

Normal crash recovery deals with loss of volatile storage. Media recovery

deals with loss of nonvolatile storage. In the end the entire database system

can be seen as an approximation of stable storage for the data. Most systems

are designed to maintain this approximation in the presence of at most one

component failure. Failure to maintain the approximation of stable storage

results in loss of the ACID properties.

5.2 Log-Based Recovery

Logs are the best-known technique for recovery. The general idea is that

as modi�cations are made to the database, the modi�cation (e.g., old value

and new value of the object) is stored in the log. The log can then be used

to redo the updates or to undo the updates.

There are several variations of logging [12, 35, 102].

Before-image logging (also called undo logging) means that the old value

of a data item (along with control information) is written to the log before

the value of the data item is changed. All data modi�ed by a transaction

must be written to disk before the transaction can commit, because there is

no way to redo the transaction if the system crashes after commit but before

the data has been written to disk.

After-image logging (or redo logging) means that the new values of data

items are written to the log. New values are not written to data pages until

the transaction has committed, and thus there is no need to undo them at

recovery time.

Write-ahead logging (or undo/redo logging) records both the old and the

new value of a data item in the log. This permits updates to be written to

the database while the transaction is active, but does not require
ushing

changes to disk at transaction commit (only the log needs to be
ushed).

Most log-based systems modify data in-place; that is, they modify the

contents of existing data pages and overwrite the old contents.

Shadow paging is an example of a recovery method which does not update

data in-place. Instead, a new page is allocated whenever one is modi�ed,

and existing pages are never overwritten as long as they are valid. Shadow

paging is discussed in more detail in Section 6.

5.3. WRITE-AHEAD LOGGING 35

5.3 Write-Ahead Logging

Write-ahead logging is widely used in commercial databases [66], and has

been found to provide the best overall performance [3, 4, 42, 43, 89]. It sup-

ports �ne-granularity locking [66], extended lock modes [66], partial rollbacks

[66], on-the-
y incremental dumping [69], B-tree locking [53, 54, 65, 67], tran-

sient versioning for e�cient execution of read-only transactions [71], remote

backup management [70, 72] and nested transactions [92].

The basic write-ahead logging algorithm works as follows [12, pp. 180{

195]. T

i

identi�es the transaction, x names a data item, and v is the value

to be written.

Write(T

i

, x, v)

1. If the page containing x is not in the cache, fetch it.

2. Append [T

i

, x, value(x), v] to the log.

3. Write v into the space occupied by x.

Read(T

i

, x)

1. If the page containing x is not in the cache, fetch it.

2. Return the value of x.

Commit(T

i

)

1. Write a commit record for T

i

to the log and
ush the log.

2. Acknowledge commitment to the scheduler.

Abort(T

i

)

1. For each data item x updated by T

i

:

� if the page containing x is not in the cache, fetch it;

� copy the before image of x (as recorded in the log) into the space

occupied by x.

2. Write an abort record for T

i

to the log.

3. Acknowledge the abortion to the scheduler.

36 CHAPTER 5. RECOVERY

Recovery after a crash works by using the before images to undo any

transactions for which there is no commit record, and by using the after

images to redo any updates which had not been
ushed to disk from the

cache. Log sequence numbers (LSNs) [12, 33, 66] are used to determine

which pages on disk already contain new values.

Checkpointing is used to limit how far the log needs to be scanned. The

beginning and the end of a checkpoint are recorded in the log. All dirty pages

are
ushed to disk during the checkpoint; however, transaction activity is

not quiesced. The recovery system then knows that all updates made before

the beginning of the last checkpoint are already re
ected in the physical

database on disk. The checkpoint log records also contain a list of active

transactions at that time; that information can be used to determine which

transactions were still active when the system crashed without needing to

scan further in the log. Fuzzy checkpointing can be used to reduce disk

tra�c during a checkpoint; the idea is to
ush those pages that have not

been written to disk since the beginning of the previous checkpoint, and at

restart scan the log until the beginning of the second to last checkpoint.

Logical logging (or operation logging) is commonly used with write-ahead

logging. The idea is to log the operation that was performed (for example,

insert record r in relation R). Logical logging reduces log size, and is more

exible than physical logging. It allows restructuring the physical database

so that data may get stored on a completely di�erent physical page after

recovery. An example of this is B-tree reorganization during insertion [67].

Record level locking (that is, locking individual records which may be

smaller than a page) requires care because page-level LSNs can no longer be

used to determine the state of a page if the system crashes during recovery.

This can be solved using compensation log records, which are written to the

log during the undo phase of recovery, or by including a LSN in each record

[12, 66].

5.4 Media Recovery

Media recovery deals with recovering from destruction of the physical media

(disk) used to store the database. Since hardware failures (disk crashes etc.)

occur relatively frequently (about once a year), the system must be able to

recover from such failures.

Backups are one form of media recovery. A backup alone cannot guar-

antee the durability of transactions, since transactions executed after the

5.4. MEDIA RECOVERY 37

backup are not re
ected in the backup.

A backup together with log entries for transactions executed after the

dump can be used to reconstruct the state of the database at the time of the

failure. All industrial-strength database systems must support dumping and

restoring the database, dumping preferably not disturbing normal transac-

tion processing. Very large databases cannot reasonably be dumped in full

very often, and incremental dumps (that is, dumps of only that data which

has changed since the previous dump) are important in such environments

[36, 69, 84, 91, 94].

Redundancy can be used to tolerate failures without disturbing transac-

tion processing. Mirroring [33, 37, 78] is a technique where the same data

is stored on two (or more) disks, and if one disk fails, the other can be used

to retrieve the data and repair the failed disk. Mirroring also improves read

performance at the expense of write performance. Doubly distorted mirrors

[78] provide improved write performance at the expense of disk space and

special hardware.

RAID (Redundant Array of Inexpensive Disks) [37, 80, 99, 100] also

permits recovery from disk failures. The idea is to store the data on just

one disk, but for every few disks there is a parity disk which contains the

exclusive-or of the data in the corresponding blocks on the other disks. If

one disk fails, its data can be reconstructed by computing the exclusive-or

of the data on the other disks. This permits recovery after a disk crash, and

even normal operation at reduced performance. Di�erent RAID implemen-

tations store the parity information di�erently, and have radically di�erent

performance pro�les. RAID does not improve read performance and causes

extra overhead for writes. However, its disk space overhead is much less than

that of mirroring (about 10{20% compared to 100% for mirroring).

5.4.1 Recovering from a Bad Block

The most common kind of a disk failure is the destruction of the contents of

a single disk block. Bad blocks appear fairly often (about once a year) on

disks during normal usage. Data in a disk block may also get destroyed due

to a software error which writes garbage to the disk (in this case the most

di�cult problem is detecting that the block has been corrupted).

Many systems support automatic recovery from this kind of failures [66].

The log and backup copies can be used to reconstruct the state of the block.

Mirroring and RAID systems can easily recover from this kind of failure

without disturbing normal operation.

38 CHAPTER 5. RECOVERY

In many applications it is unacceptable to crash the database system or

make it unavailable for users because of the failure of a single block.

5.4.2 Recovering from a Disk Crash

The contents of an entire disk are sometimes lost due to a head crash, compo-

nent failure, or some other similar problem. Typical disks have mean times

to failure of a few years. Most database applications thus need to consider

this possibility.

One approach to recovering from a disk crash is to restore the latest

backup dump of the database, and redo transactions that have been executed

after the dump from the log.

Mirroring and RAID systems can recover from this kind of a failure. A

new disk is substituted for the failed one, and the system brings the new

disk up to date using the intact ones. Normal operation can continue dur-

ing recovery; however, not all practical systems support normal transaction

processing during recovery from a disk crash ([37] discusses the problems

involved). While the system is repairing the damage, it cannot sustain an-

other disk crash; however, an additional disk crash during repair is highly

unlikely if the disks have independent failure modes.

5.4.3 Recovering from Site Loss

A rather extreme catastrophe is the loss of an entire site (computer room

and facilities) due to �re, earthquake, acts of war, sabotage, labor disputes,

or some other cause. Basically all lesser failures can be treated as a site loss

if the other methods fail.

Geographically remote system pairs with independent connections to user

terminals can be used to tolerate site crashes [33]. Several algorithms exist

for maintaining a hot standby at a remote site [33, 44, 70, 72, 83]. Should

the primary site fail for any reason, the backup site can immediately take

over and continue serving users without any interruption of service.

In the event that all of these methods fail, the only possibility is to restore

the entire database from the backup copies, compromising the durability of

transactions. In many low-end systems this is the only kind of media recovery

supported. In high-end and high-availability systems more sophisticated

methods are necessary.

5.5. CLASSIFICATION AND PERFORMANCE ISSUES 39

5.5 Classi�cation and Performance Issues

Di�erent recovery methods have di�erent properties with respect to cache

management, checkpointing, and atomicity of disk updates [35].

A recovery method has atomic updates if any set of modi�ed pages can

be propagated as a unit, such that either all or none of the updates become

part of the materialized database. Conversely, a method is not atomic if

multiple updates cannot be done atomically. Most update-in-place methods

are not atomic in this sense, because they can modify multiple pages, and

it is possible that some of the pages have been written to disk while some

have not. Shadow paging (Section 6) is an example of a method which has

atomic updates.

Some recovery methods permit the cache to write dirty pages to disk at

any time (strictly speaking, only when the page is not being modi�ed by

the system). This is called the steal policy (the cache is allowed to write

the page to disk and remove it from the cache). Some methods, particularly

redo-only logging, do not permit modi�ed data to be written to disk before

transaction commit.

Methods which do not permit the steal policy have problems in handling

large transactions. There may not be enough cache memory in the system to

hold all updates of a transaction. Thus, such systems must either limit the

maximum transaction size, or implement some kind of over
ow mechanisms

(which are di�cult to make e�cient).

Undo-only logging requires that all modi�ed data must be written to disk

before the transaction can commit. This is called the force policy (updates

are forced to disk at commit).

Systems that use the force policy must perform many more writes than

systems that do not require the force policy, especially if the database con-

tains many hotspots. Moreover, if update-in-place is used, the writes go to

arbitrary �xed locations on the disk, resulting in many time-consuming seeks

and rotational delays, which greatly lengthens the time required for process-

ing a commit. Force policy in connection with shadow paging is discussed

in Sections 6.5 and 17.

5.6 Clustering

Clustering [33] is an issue not directly related to recovery which can greatly

a�ect database performance. Clustering means that data which is frequently

40 CHAPTER 5. RECOVERY

accessed together is stored in nearby locations on disk.

Clustering is relevant in several situations. In sequential scans it is very

important that the data to be read is stored contiguously on disk to avoid

seeks. Large objects (blobs) are also usually accessed sequentially. Complex

objects [15, 16] often involve accessing several objects together. Such objects

should be stored on the same or on nearby pages.

Many join

1

algorithms depend on being able to e�ciently read a record

from one table, and then records from another table that have the same key

value in some �eld. This is typically done using a clustering index. For this

purpose it is important to be able to cluster all records with the same key

value into the same physical block.

Clustering is not relevant for small random accesses to a large database.

Such accesses will almost always require a full seek regardless of how the

data is physically organized.

1

Join is a relational algebra operation which merges data in two or more tables [46]. It

can be seen as a selection on the cartesian product of the tables.

Chapter 6

Shadow Paging

Shadow paging is an alternative to logging in the implementation of recov-

ery. The idea is that the data structures used for implementing the logical

database only refer to logical pages, and a page table is used to map each

logical page number to a physical page number. When a page is modi�ed,

the original physical page is not modi�ed; instead, a new physical page is

allocated, and when the transaction commits, the page table is updated

atomically to re
ect the new locations of modi�ed pages.

There are several alternatives for implementing atomic page table up-

dates. The original shadow page algorithm [60] used two page tables (the

current and the shadow page table), and a bit which tells which page table

is current. System R [32] used a similar approach with logs on page table

pages to implement multiple concurrent transactions. Reuter [88] avoided

the page table entirely by using two physical pages with timestamps for each

logical page. Lampson and Sturgis [49, 64] used intentions lists as a redo

mechanism (the list of changes is �rst recorded in stable storage, and only

then is the page table modi�ed). Kent [42, 43] implemented the page table

as a tree-like structure, the modi�ed parts of which were rebuilt using fresh

pages, and a page table pointer was set to point to the new page table at

commit. Each of these alternatives will be discussed in more detail in the

following sections.

There have been several studies on the relative performance of shadow

paging algorithms compared to log-based algorithms [3, 4, 32, 42, 43]. Shad-

ow paging has consistently been found to have inferior performance. Addi-

tionally, shadow paging has had several other problems for which no solutions

have been presented: shadow paging does not easily support �ne-granularity

41

42 CHAPTER 6. SHADOW PAGING

locking [66], large read-only transactions, media recovery, two-phase commit

[66] (though [49] presents an algorithm for two-phase commit), or partial

rollbacks [66] (though System R had them [32]). Additionally, shadow pag-

ing destroys clustering of data [12, 32, 33], although techniques have also

been presented to avoid this [43, 60, 88].

Generally, very little research has been done on shadow paging since

about 1985. It is very widely believed that shadow paging will never be

a usable recovery mechanism. Newer books on database systems hardly

mention it. Virtually all commercial systems use logs, with the exception of

some object-oriented databases, and even there the experiences have been

discouraging [30].

6.1 The Original Shadow Page Algorithm

Lorie [60] presented the original shadow page algorithm. In many textbooks

this algorithm is the only description of shadow paging.

The idea is that there are two page tables on disk in �xed locations. One

of the page tables contains the current database state (possibly containing

updates of uncommitted transactions). The other page table (called the

shadow page table) contains an earlier transaction-consistent database state.

Additionally, there is a master record, which tells which of the page tables

describes the current database. (Lorie [60] also describes the use of two free

block bitmaps, and his description includes multiple segments, each of which

has a separate page table.)

Read operations work by mapping the requested page number to a phys-

ical page number using the current page table, and reading that physical

page.

Write operations work by allocating a new page, copying the new contents

to the new page, and changing the mapping in the current page table to point

to the new page.

The original scheme [60] does not support durable commitment for trans-

actions. Instead, a checkpoint is used to make permanent the changes made

by transactions executed so far. A checkpoint works by quiescing transac-

tions, writing to disk all changes made so far (including the current page

table), and toggling the bit in the master record which indicates which page

table is current. The old current page table is then copied to the other page

table, and the old current page table becomes the shadow page table.

The original scheme does not discuss aborting individual transactions.

6.2. INTENTIONS LISTS 43

(It is of course possible to return to the previous checkpoint, but several

transactions may have been executed after the last checkpoint.)

Recovery after a crash works by copying the shadow page table (and free

block bitmap) to the current page table. No other processing is needed. The

state of the database returns to that of the last checkpoint.

If durability of transactions and aborting individual transactions need to

be supported, only one transaction can be performed between checkpoints.

System R [32] solved this using logs together with shadowing.

6.2 Intentions Lists

Lampson and Sturgis [48, 49] described a method for implementing atomic

transactions. Their idea is to store all the changes made by a transaction

in an intentions list. The intentions list is saved in stable storage in the

�rst phase of commit (they use two-phase commit), and executed in the

second phase of commit. If the transaction is aborted, the intentions list is

never executed. If the transaction crashes before the intentions list has been

executed, it will be re-executed during recovery. Intentions lists can be seen

as a variation of redo-only logging.

Intentions lists can be used either with shadowing or without shadowing.

When used with shadowing, they contain changes to the page table mapping.

Only one copy of the page table is needed, since changes are made atomic

by the redo mechanism. When used without shadowing, the intentions list

must contain all of the new data to be written.

Intentions lists can be used to implement multiple concurrent transac-

tions, since locking guarantees that the intentions lists of di�erent transac-

tions refer to di�erent sets of pages. Durable commitment and abortion of

individual transactions are easily supported.

Menas�ce and Landes [64] use the intentions list method (they also discuss

not having a page table and �rst writing the page to a di�erent area on disk)

with two-phase commit. The page table itself is shadowed (that is, existing

page table pages are not modi�ed; instead, a new page table page is allocated

whenever a modi�cation is made). However, updates to the page table on

disk are done only at checkpoints [60], not for every transaction. On-the-
y

dumping of the database is implemented using the initial version method

described in [91].

Agrawal and DeWitt [4] have also used the intentions list paradigm.

They use an incremental page table, which is similar to an intentions list,

44 CHAPTER 6. SHADOW PAGING

but is used as a di�erential to the global page table while the transaction is

active.

6.3 Page Table in Shadowed Storage

Kent [42, 43] has made several improvements to the previous shadow paging

schemes. First, the page table is structured as a tree, and existing pages are

never modi�ed. Instead, a new physical page is allocated for the modi�ed

page table page, and higher level page table pages are modi�ed the same

way to contain the new address of the lower level page table page. There

is a page table pointer in a �xed location in stable storage which is used to

record the current location of the highest level page table page.

Kent uses a per-transaction incremental page table to hold the changes

made to the page table by a transaction. The incremental page table is ba-

sically a list of mappings hL;P

old

; P

new

i, where L is the logical page number,

P

old

is the old mapping of the page, and P

new

is the new mapping of the

page.

Read operations �rst check from the incremental page table if the trans-

action has a local copy of the page. If available, the local copy is used.

Otherwise, the page table is used to map the logical page number to a phys-

ical page, and that page number is used.

Write operations �rst check if the transaction already has a local copy

of the page. If so, that copy is used. Otherwise, the system allocates a

new physical page, copies the old contents of the logical page to that page,

modi�es the copy, and adds an entry for the page to its incremental page

table.

Page-level two-phase locking on logical page numbers is used for concur-

rency control. Reads lock the page in shared mode before doing anything

else, and writes lock the page in exclusive mode. Shared locks are released

when the transaction requests to commit, and exclusive locks when the trans-

action has actually committed.

If a transaction needs to be aborted, all that has to be done is to free

the new page numbers in its incremental page table and to release all locks

held by the transaction.

Kent uses commit batching (or group commit [33, pp. 509{510]) to im-

prove the performance of commits. When a transaction requests to be com-

mitted, it is put on a list of transactions waiting to be committed. A separate

process takes all transactions on the list a few times a second. It merges their

6.4. CLUSTERING WITH SHADOW PAGING 45

incremental page tables (there can be no con
icts between the transactions

since only pages that are exclusively locked can have entries in the incremen-

tal page table). The changes of all those transactions are then made to the

global page table, allocating new physical pages for all page table pages that

are changed. All modi�ed pages are then
ushed to disk, and the address of

the new page table is written to the master pointer. The old physical pages

(and the old versions of the modi�ed page table pages) are freed.

Kent's algorithm supports multiple concurrent transactions without any

logging. It supports full durability and isolation for all transactions. No

garbage collection is needed. Kent does not discuss things like on-the-
y

dumping or media recovery; however, it will be shown in Sections 11.6.2 and

14 that both of these can be supported e�ciently.

6.4 Clustering with Shadow Paging

Several alternatives have been proposed for supporting clustering with shadow

paging [43, 60, 88] (strictly speaking, [88] is not a shadow paging system in

the same sense as the others since it has no page table). The basic idea in

all of them is to keep the logical-to-physical mapping approximately linear.

Lorie [60] has proposed that disk cylinders should be used as clusters,

and that neighboring logical pages should, if at all possible, be allocated

from the same cylinder. Some space should be reserved on each cylinder so

that new copies of pages can be allocated on the same cylinder.

Reuter [88] proposed in his TWIST algorithm allocating two physical

pages for each logical page. A timestamp is used to determine which of the

physical pages contains the current value of the page. The two pages are

always adjacent pages on disk, and thus it is very cheap to read both of them

at the same time. No page table is needed in this scheme since the mapping

from logical to physical pages is �xed.

Kent [42, 43] uses a clustering mechanism similar to that of Lorie [60].

Kent's algorithm makes the transaction wait if there no suitable physical

page is available for allocation.

6.5 Performance Results

Several studies have shown that shadow paging performs much worse than

the best log-based approaches, particularly write-ahead logging.

46 CHAPTER 6. SHADOW PAGING

Agrawal and DeWitt [3, 4] compared write-ahead logging to shadow pag-

ing. Their shadow paging version was based on the Lorie [60] algorithm, and

used intentions lists [49] to implement concurrent transactions. They as-

sumed that the clustering algorithm [60] was being used. Logging was found

to be the overall winner, especially for small update transactions, although

shadow paging performed reasonably well for large transactions with a se-

quential access pattern. The primary overhead with shadow paging turned

out to be reading and updating the shadow page table.

Kent [42, 43] compared write-ahead logging with his version of shadow

paging (Section 6.3). He found logging to perform better for small update

transactions, but for large transactions shadow paging sometimes performed

better. The primary overhead with shadow paging was page table I/O.

Many papers mention lack of clustering as a major performance problem

with shadows [32, 66]. This is strange in the light that several clustering

algorithms have been presented for shadow paging (though System R [32]

did not use any of them).

Force policy (that is, the fact that all modi�ed pages must be
ushed

to disk at transaction commit) has been mentioned as one problem with

shadow paging [30, 66]. This is a real problem, which clearly increases the

time needed to commit a transaction. It is, however, unclear how much it

really increases the steady-state average disk I/O [106].

Part II

The New Shadow Paging

Algorithms

47

Chapter 7

Introduction

This part of the thesis presents the new shadow paging algorithms developed

in this work. They are based on the variant of shadow paging developed by

Kent

1

[43].

Sections 8 and 9 describe a novel method for supporting �ne-granularity

locking with shadow paging [105, 108]. Section 10 describes how to use the

�ne-granularity locking framework for B-trees. Section 11 describes how

shadow paging can be used to take transaction-consistent snapshots of the

database very e�ciently [107]. Section 11.6.1 describes how to execute read-

only transactions without any locking using snapshots, and Section 11.6.2

describes how to use snapshots to implement on-the-
y multi-level incre-

mental dumping without disturbing normal transaction processing. Section

12 describes a write optimization method which signi�cantly improves the

performance of shadow paging [106]. The clustering problem is analyzed

in Section 13 and a solution is presented which provides reasonable perfor-

mance for most applications. Section 14 describes how to support media

recovery e�ciently with shadow paging. Finally, Section 15 describes how

to do two-phase commit so that shadow paging can be used in distributed

databases [105].

1

Actually, many of the ideas described in [43] were reinvented independently, and only

later did the earlier work become known to the author.

49

50 CHAPTER 7. INTRODUCTION

7.1 The Variant of Shadow Paging Used in This

Work

The variant of shadow paging used in this work di�ers signi�cantly frommost

of the earlier algorithms in the literature [32, 48, 49, 60, 88], but is similar

to Kent's algorithm [42, 43] described in Section 6.3. This section describes

the page-oriented version of the algorithm (Kent assumes page-level locking)

and establishes some terminology.

The database consists of a number of disk blocks organized as pages.

Each page can hold a �xed number of bytes, and is identi�ed by a number

from which its address on disk can be computed. These pages will be called

physical because they have a direct representation on disk.

The levels of the database system above the transaction manager also see

the database as a collection of numbered pages. These will be called logical

pages to distinguish them from physical pages. High level data structures,

such as those used to implement tables or indexes, only refer to logical pages.

The mapping between logical and physical pages is maintained using a

page table. Conceptually it is an array of physical page numbers indexed by

the logical page number. There is always a valid page table in nonvolatile

storage on disk.

The page table is implemented as a tree-like structure (Figure 7.1). Leaf

pages of the tree contain a �xed number of pointers to physical data pages.

Each page above the leaf pages contains the same number of pointers to leaf

pages, and so on. All levels of the tree are identical. When moving down

the tree, the page on each level is indexed by (L=N

level�1

) mod N , where L

is the logical page number, N is the number of page table entries on each

page, and level is the level on the page table on which the page table is, leaf

level being 1, the one above that 2, and so on.

The page table is in shadowed storage (that is, existing pages are never

modi�ed, and new pages are allocated if a page needs to be modi�ed). There

is a page table pointer in a �xed location in stable storage. It contains the

address of the root of the page table on disk. When a transaction modi�es

the database, it constructs a new page table (without modifying any of the

existing page table pages), writes the new page table to disk, and commits

by atomically writing the address of the new page table to the page table

pointer. The new page table is partially shared with the old page table; only

those pages which are modi�ed are rewritten.

Each page table entry contains two physical page numbers (Section 14

7.1. THE VARIANT OF SHADOW PAGING USED IN THIS WORK 51

Data PagesPage Table Pages

Page Table
Pointer

Figure 7.1: The shadow paging �le structure.

explains why there are two physical page numbers), a timestamp of the

last modi�cation of the page table entry (Section 11), the size of the page

(Section 13), plus
ags and information for free space management.

The size of a page table entry is 16 bytes. This allows 40 bits for each

physical page number, 40 bits for the timestamp, one byte for page size and

ags and free space information. With 512 byte physical pages, 40 bits for

the address allows 512 terabyte maximum database size. The timestamp

is a commit batch sequence number. At ten batches per second it wraps

around after 3 500 years. Page size is stored as log

2

S � 9 in 4 bits. 4 bits

are available for
ags and allocation information.

Typical page sizes are from 512 bytes to a few kB for frequently updated

relational data, and up to 1 MB for blobs and multimedia data. The size of

the page table is about 0.01 % to 3 % of the size of the database. In many

applications it �ts entirely in main memory.

Concurrent transactions are implemented by having a per-transaction

incremental page table which is used to store the changes made by the

transaction. The incremental page table is conceptually a list of tuples

hL;P

old

; P

new

i, where L is the logical page number, P

old

is the old physical

page number, and P

new

is the new physical page number. P

old

corresponds

to the global version of the page and P

new

corresponds to the local version

52 CHAPTER 7. INTRODUCTION

of the page.

Two-phase locking on logical pages is used for concurrency control (it

will be seen in Sections 8 and 10 that with �ne-granularity locking this is

somewhat di�erent, but the basic idea remains the same). To read a page,

the transaction �rst acquires a shared lock on the logical page. It then looks

for a corresponding entry in its incremental page table, and if not found,

maps the page using the global page table. To write a page, the transaction

obtains an exclusive lock on the logical page. It then checks if it already

has an entry for the page in its incremental page table. If so, it uses the

already-existing local version of the page. If not, it creates a copy of the

page, and adds a corresponding entry to its incremental page table.

Since a transaction must have an exclusive lock before it can modify a

page, only one transaction can have a local version of any given logical page,

and there can be no con
icts between the incremental page tables of di�erent

transactions. This means that it is possible to install the modi�cations of

several transactions into the global page table at once, reducing the overhead

due to constructing new page tables. This is implemented by queuing all

transactions which have requested to be committed, and having a separate

process periodically (a few times a second or as soon as the previous commit

batch has been completed) take all transactions in the queue and install their

modi�cations (local versions) to the global page table. This is called commit

batching [33, 43]. The basic idea is to combine many small transactions into

a larger page table level transaction.

No garbage collection is needed with this method. After a transaction

has committed, it can free the \old" versions of the pages (including page

table pages) that it has modi�ed. If a transaction needs to be aborted, all

that has to be done is to free the \new" versions in its incremental page

table; no modi�cations need to be made to the global database.

The free list of physical pages can either be extracted from the page table

on disk at startup time, or be computed and written to disk at every commit

batch.

7.2 The Impact of Technological Development

The cost of main memory has dropped dramatically since the �rst half of

1980's, when most performance comparisons between shadow paging and

logging were made. It is now reasonable to assume that in most applications

the entire page table of even a fairly large database will be available in the

53

cache most of the time. Even for very large databases, those parts of the

page table which are used frequently will remain in the cache. This has

removed the most serious performance problem with shadow paging.

54 CHAPTER 7. FINE-GRANULARITY LOCKING

Chapter 8

Fine-Granularity Locking

Supporting Extended Lock

Modes and Early Releasing

of Locks

It is nontrivial to do �ne-granularity locking with shadow paging. The pri-

mary problem is that if the modi�cations were made to the actual data

pages, and two transactions modi�ed the same page, it would not be possi-

ble to commit or abort the transactions individually (they would have to be

committed or aborted together since there would be no way to commit one

and undo the other). If, on the other hand, each transaction created its own

copy of the page, their changes would somehow have be merged at commit

time, requiring extra bookkeeping and overhead. The only feasible approach

thus seems to be to store the changes made by each transaction separately in

a per-transaction data structure, and install the changes to the data pages

only after the transaction has requested to be committed [105, 108].

The approach presented here is based on storing the changes separately

in main memory. The changes do not refer to physical pages; instead, logi-

cal record identi�ers are used, and the operation to be performed is stored

instead of actual values.

Two-phase locking is used for concurrency control. The locks refer only

to logical identi�ers, and it is possible that the object moves to a di�erent

page while the transaction is active. The locking guarantees that the parts of

the logical database which the transaction has modi�ed will not be touched

55

56 CHAPTER 8. FINE-GRANULARITY LOCKING

Allow
patching

Wait for patching
to quiesce

Realize &
build
pagetable Flush

pagetable
Write

pointer

all locks
Release

status
ReturnPatch

changes

request
Commit

Release
shared locksChanges made to local data Waiting for commit

Start End

Commit batch:

Figure 8.1: The lifetime of a transaction.

by other transactions.

Very large transactions are handled by escalating the locks to table level,

and switching to use immediate page-level updates for that transaction and

table. This is discussed in Section 8.6.

8.1 The Lifetime of a Transaction

For most of its duration a transaction is in the \active" state; all modi�ca-

tions are made in this state. In the active state, the transaction may at any

time request to be aborted or to be committed. After the transaction has

requested to be committed, it can no longer issue any other requests to the

database. For some time the fate of the transaction is undetermined; then

the system either aborts the transaction or commits it. In either case the

result is then reported to higher levels of the system. (See Figure 8.1.)

In the active phase a transaction must protect all of its actions using

appropriate locking. An object must be locked in shared mode before reading

and in exclusive mode before updating.

With shadow paging and �ne-granularity locking, it is normally not per-

missible to modify the actual cache page containing the data being modi-

�ed. Instead, it is necessary to store the changes separately in a suitable

per-transaction data structure. Only if the transaction holds a lock covering

the entire page, can it allocate a local copy of the original data page and

modify the page.

8.2. COMMIT PROCESSING AND COMBINING TRANSACTIONS 57

8.2 Commit Processing and Combining Transac-

tions

When a transaction requests to be committed, all of its shared locks can be

released immediately because it is known that the transaction will not do

any more reads or updates.

At some point before a transaction can become permanent, all changes

made by it must be patched to the global database. To avoid anomalies

it is essential that all changes patched to a page are made by transactions

that end up in the same commit batch. The easiest way to maintain this

constraint is to guarantee that all transactions that have started to patch

their changes end up in the same batch as all other transactions that have

started to patch their changes but have not yet been included in some commit

batch.

This essentially means that to start a commit batch, it is necessary to

prevent further transactions from starting to patch their changes, to wait un-

til all transactions currently patching have �nished patching, and to include

all transactions which have patched their changes in the batch. Patching

can continue after the changes made in the commit batch have been entered

into the page table; however, there is no need to wait until the page table

or data pages have been
ushed to disk. This means that transactions that

come later can see uncommitted data; however, it is guaranteed that none

of those transactions can commit without the earlier batch committing as

well.

The changes made to the database by a transaction patching its changes

are not visible to active transactions since the parts of the logical database

a�ected by patching operations are exclusively locked by the transaction

doing the patching. The physical database may, however, change anywhere;

for example, a patching operation can cause a B-tree reorganization, but

it will not a�ect the logical database. Patching operations themselves must

use latches.

1

to maintain consistency both against other patching operations

and against active transactions. It is important to understand that locks are

on logical database objects whereas latches are on pages, and the mapping

can be far from one-to-one. Since only latches are used during patching, it

is possible that not all of the updates made by a transaction are patched

1

A latch is a low-level lock on a physical page [33] They are used to protect the physical

consistency of updates. A latch on a page locks the page in main memory. A shared latch

allows reading the page, and an exclusive latch allows updating the page. Latches are

often referred to as the FIX-USE-UNFIX protocol.

58 CHAPTER 8. FINE-GRANULARITY LOCKING

atomically. Other patching operations can thus see partial updates unless

explicitly protected using latches. However, from the point of view of active

transactions the patching happens atomically since the a�ected portions of

the logical database are exclusively locked.

After a transaction has patched all of its changes, it must wait until its

commit batch has been completed or the transaction has been aborted. It

will be seen in Section 8.4 that it is possible to release all locks, including

exclusive locks, before entering the wait. This means that locks do not

need to be held during the wait and the processing of the commit batch

(since patching typically only involves operations in the cache, it is very

fast, whereas the commit batch must do real disk I/O, resulting in lengthy

waits). Early releasing of locks is possible because of the ordering restrictions

on transaction commits: it is not possible that a transaction which has read

uncommitted data would commit without the transaction which modi�ed

the data also committing.

8.3 Aborting Transactions

Aborting transactions which have not yet begun patching is trivial, be-

cause those transactions have not yet made any modi�cations to the global

database. It is thus su�cient to free all modi�cation data and all local pages

of the transaction.

If a transaction has to be aborted after it has released its exclusive locks,

cascading aborts must be considered. All transactions which have accessed

any data modi�ed by the transaction must be aborted as well. This either

requires keeping a graph of dependencies between transactions, or aborting

all transactions which had not yet requested to be committed when the

transaction released its locks.

A transaction can also get aborted after it has started patching but before

it has released its locks. In this case it would have to undo its partial patching

modi�cations. This would require code similar to undo recovery in log-based

databases, and is clearly unwarranted for handling a few exceptional error

conditions. Aborting all transactions that would go to the same or a later

batch and throwing away any patched copies of pages solves this problem.

To summarize, if any transaction, for any reason, needs to be aborted

after it has begun patching its changes, all transactions in the same or a

later batch must be aborted. This is a very rare event and should only be

caused by exceptional error conditions such as a system crash (in which case

8.4. EARLY RELEASING OF LOCKS 59

the cascading abort is implicit), a resource shortage (such as disk full), or a

hardware or software failure (such as a disk crash). None of these happens

under normal operation.

8.4 Early Releasing of Locks

The purpose of the early releasing of locks optimization [21, 22, 23, 57, 105]

is to reduce the time that locks are held. It turns out to be possible to

release exclusive locks immediately after the changes of the transaction have

been made globally visible. This is based on the following properties of the

system:

1. no transaction which has requested to commit after transaction A re-

leased its exclusive locks can commit before transaction A, and

2. no transaction which has requested to commit after transaction A re-

leased its exclusive locks can commit without transaction A also com-

mitting.

Informal proof of the �rst property. A transaction releases its locks

after it has �nished patching. The commit thread takes into a batch those

transactions which have started to patch before a certain point of time. Since

A has �nished patching, it certainly has started to patch, and thus will be

included in the next batch to start. Since B cannot be included in any batch

earlier than the next batch to start, it cannot possibly commit before A.

Informal proof of the second property. As described in Section 8.3,

if a transaction aborts after it has started patching, all active and uncom-

mitted transactions in the system will be aborted. Since B is in the same

or a later batch than A, and the transactions in a batch either all commit

or all abort, B is not yet committed when A aborts. Since all uncommitted

transactions are aborted if any transaction is aborted after it has started

patching, B is also aborted if A aborts.

The locking protocol is not strict since exclusive locks are released be-

fore commitment. However, locks are only released after patching. Other

transactions may modify the uncommitted data before the transaction which

originally modi�ed the data is included in a commit batch. All of the trans-

actions which modify the data while it is uncommitted end up in the same

commit batch, and are either all committed or all aborted (if a transaction

uses page-level updates, it will create a copy of the page and not overwrite

the uncommitted data except if it ends up in the same commit batch as the

60 CHAPTER 8. FINE-GRANULARITY LOCKING

original transaction). On the other hand, after the page has been included

in a commit batch, further modi�cations to the page will create a new copy

of the data, e�ectively accessing a di�erent version of the data (this is a very

restricted form of multi-version concurrency control). Non-strictness of the

locking protocol is thus not a problem with this method.

This locking protocol implies cascading aborts. Their handling was de-

scribed in the previous section. Cascading aborts do not cause any problems

in this case.

8.5 Relaxing Durability

If full persistence is not required by the application, it is possible to re-

duce transaction commit times by reporting success immediately when the

transaction requests to commit. The transaction will then become perma-

nent when the next commit batch completes (usually within a few tenths

of a second). All the things that could cause the transaction to be aborted

during that time are very exceptional, and can be treated as a crash. All

other properties of ACID are maintained. The decision whether to relax

persistence can be made on a per-transaction basis.

8.6 Very Large Transactions

The �ne-granularity locking scheme described here does not work well for

very large transactions, both because of the locking overhead, and because

the data structures needed to hold the modi�cations of the transaction grow

excessively large. Instead, large transactions are handled by switching to

page-level updates after a transaction has made a certain number of mod-

i�cations. This is used together with lock escalation. The idea is to make

exclusive copies of the modi�ed pages, so that there is no need to store the

changes separately, and data can be
ushed to disk from the cache.

Switching to page-level updates for large transactions will usually not

reduce concurrency but will instead reduce the locking overhead. Without

switching to page-level updates, there might not be enough main memory

to store the changes of a very large transaction, and installing the �ne-

granularity changes of a large transaction at commit time would intolerably

lengthen the time needed for processing the commit batch and would delay

other transaction processing.

8.7. EXTENDED LOCK MODES 61

8.7 Extended Lock Modes

Extended lock modes [33, 99] for commutative operations (such as increment

and decrement) can easily be supported with this scheme. The commutative

operation is recorded in the �ne-granularity changes of the transaction, and

the actual update to the data is done at patching time.

8.8 Read Operations

Read operations return data from the disk �ltered by changes in main mem-

ory. There are four levels where data may originate: the disk-based data

structure, global pages into which changes have been patched but which have

not yet been committed to disk, local copies in the transaction's own incre-

mental page table, and �ne-granularity changes maintained by the particular

�ne-granularity type in main memory. The �rst three levels are handled by

the �ne-granularity locking framework described here (a particular page will

come from one of these sources); �ltering the page-level data by the changes

in main memory must be done by the �ne-granularity level. Note that lock-

ing guarantees that only changes made by the transaction itself need to be

considered.

8.9 Interaction with Write Optimizations

The write optimizations cause add some complexity to the cache and page

table levels (cf. Section 12). The basic idea is to have virtual page numbers

(Section 12.2) which refer to pages in the cache for which physical page

numbers have not yet been assigned. The pages are then realized at commit

time, which means that actual physical page numbers are allocated for them.

The physical page numbers are then stored in the page table. (The cache is

free to allocate physical page numbers at any time and map requests to the

real physical addresses, but this is not visible to higher levels of the system.)

The implementation of concurrent transactions does not need to be aware

whether the page numbers returned to it by the lower levels are virtual

pages or real physical pages. In connection with �ne-granularity locking

the term physical page number will be used to refer to either type of a page

number. The code to implement concurrent transactions and �ne-granularity

locking is completely identical whether or not the write optimizations are

implemented.

62 CHAPTER 8. FINE-GRANULARITY LOCKING

8.10 Interaction with Media Recovery

Two physical page numbers are stored in page table entries for the imple-

mentation of media recovery (Section 14). However, if the physical page

numbers shown to the implementation of concurrent transactions are vir-

tual, the implementation of concurrent transactions does not need to know

about media recovery. It never sees the page numbers stored in the page

table, and it never knows how the data is stored physically.

8.11 Interaction with Snapshots

Determining when to free pages in the presence of snapshots (Section 11)

causes extra work and complexity at the page table level. However, the

implementation of concurrent transactions does not need to know about

snapshots. A snapshot is taken by copying the page table pointer, and is

not in any way a�ected by uncommitted transactions.

Chapter 9

Implementing

Fine-Granularity Locking

The ideas described in the previous section have been implemented in the

Shadows database system prototype being built at Helsinki University of

Technology, Finland. This section describes the structure of that implemen-

tation to the degree that is needed for understanding the techniques.

9.1 Overview

Concurrent transactions have been implemented using C++ classes PageTa-

ble, PageReference, BaseTransaction, BaseTransactionDatabase, Trans-

action, TransactionDatabase, and a number of classes each de�ning one

type of �ne-granularity locking (Figure 9.1).

PageTable Implements the page table and atomic updates to the page table.

It also implements write optimizations [106], snapshots [107], and page

table caching (Section 16.1). This class is not described in detail here;

however, the relevant interfaces are listed below. Levels above the page

table never see physical page numbers which have been entered into

the page table.

allocate logical page number Allocates a logical page number.

free logical page number Frees a logical page number (only used

for freeing pages previously allocated in the same transaction;

other pages are freed by changing their mapping to nil).

63

64 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

PageTable

BaseTransaction

Fine-granularity
types

Transaction

Cache

Media recovery

Figure 9.1: Layers of the Shadows system around the implementation of

concurrent transactions and �ne-granularity locking.

begin update Begins a page table update.

update mapping Tells the page table level the new mapping of a

logical page. The page table level records the mapping in its

private data structures.

commit update Commits the page table update. This works in two

phases. In the �rst phase this realizes the new physical pages and

constructs a new page table. The new page table is then made

visible to read logical page(), and a callback mechanism is used to

inform the higher level that the new pages are visible through the

page table. In phase two this
ushes the new pages and the new

page table pages to disk and updates the page table pointer. This

then frees the old data and page table pages (provided that there

are no remaining references to them from snapshots; cf. Section

11.2).

read logical page Translates the given logical page number to a phys-

ical page number, reads the page, and returns a read-only refer-

ence to it.

read physical page Reads a physical page and returns a read-only

reference to it. Since physical page numbers become invalid when

the page is entered into the page table, it is illegal to use the

physical page number during that time (however, it is legal to

have a reference to the page during that time).

9.1. OVERVIEW 65

read physical page no wait Reads a physical page if it is already

in the cache; otherwise returns an error.

read logical page no wait Reads a logical page if it is already in

the cache; otherwise returns an error.

allocate physical page Allocates a new physical page. Returns the

number of the page and an updatable reference to the page.

allocate physical copy of logical page Allocates a new physical

page, copies the contents of an existing logical page to that page,

and returns the new page number and a reference to it. If there are

any references to the physical page corresponding to the logical

page, this will wait until all references have been released. Most

of the time this function can be implemented by \renaming" the

page in the cache, and no data needs to be copied.

allocate physical copy of physical page Allocates a new physical

page, copies the contents of the speci�ed physical page to it, and

returns the new page number and a reference to the new page.

If there are any references to the old page, this will wait until

all references to the page have been released. Most of the time

this function can be implemented by \renaming" the page in the

cache, and no data needs to be copied.

read physical page for update Returns an updatable reference to

the given physical page. It is illegal to read a physical page which

has been entered into the page table, and it is illegal to have an

updatable reference while it is being entered.

free physical page Frees the speci�ed physical page. It is illegal to

free a page which has been entered into the page table.

PageReference Acts as a reference to a page in the cache. The page is

latched (in shared mode if the reference is read-only, and in exclusive

mode if the reference is updatable). The method release() is used

to release the latch and the reference when no longer needed. ptr()

returns a const pointer to the data of the page, and updatable ptr()

returns a non-const pointer to the data (and raises a fatal exception

if the reference is read-only).

BaseTransaction Implements concurrent transactions and the framework

for building �ne-granularity locking types. Most of the rest of this

section is about this class.

66 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

BaseTransactionDatabase A descriptor for a database (or a snapshot)

complementing the BaseTransaction class. This contains the data

common to all active transactions in a database (or snapshot).

Transaction Implements concurrent transactions with �ne-granularity lock-

ing. Mostly a wrapper for all supported �ne-granularity types. New

�ne-granularity locking types are added to this class. Most requests

are forwarded to the appropriate �ne-granularity type; commit trans-

action() and abort transaction() are forwarded to BaseTransaction

(there is one BaseTransaction object in every Transaction object).

TransactionDatabase A descriptor for a database (or a snapshot) comple-

menting the Transaction class. This contains any per-database data

which may be needed by �ne-granularity types.

Fine-granularity types implement the various types of �ne-granularity lock-

ing. For example, FGBTree implements �ne-granularity operations for

B-trees. All �ne-granularity types implement the following operations:

patch changes() patches the changes made by the transaction to the

global database, and abort changes() frees all changes made by the

transaction. Additionally, each �ne-granularity type implements type-

speci�c operations, such as insert() and delete() for B-trees. The imple-

mentation of B-tree management in this context is described in Section

10.

9.2 The BaseTransaction Class

BaseTransaction (together with BaseTransactionDatabase) implements

most of �ne-granularity locking. An overview will be presented in this sec-

tion; Section 9.3 describes the data structures, Section 9.4 describes the

locking protocols used, and Section 9.5 describes the implementation of each

operation.

The BaseTransaction object o�ers the following interfaces for imple-

menting �ne-granularity types.

read page Reads the speci�ed logical page and returns a read-only refer-

ence to it.

read page for update Reads the speci�ed logical page and returns an up-

datable reference to it. If this is used while the transaction is active,

9.3. DATA STRUCTURES 67

locking must be used to guarantee that no other transaction can access

any data on the same page.

allocate page Allocates a new logical page number and returns an updat-

able reference to the page.

free page Frees the speci�ed logical page.

lock Performs the speci�ed locking operation. Returns when the lock has

been granted, a deadlock has been detected, or the timeout expires.

Additionally, it has commit transaction() and abort transaction() inter-

faces. It also expects the Transaction class to implement two interfaces

which are called by BaseTransaction: patch changes callback() is expected

to call the patch changes() interface of each �ne-granularity type, and abort -

changes callback() is expected to call the abort changes() interface of each

�ne-granularity type.

The interfaces for implementing �ne-granularity types can be used both

while the transaction is active and from within the patch changes callback()

function. However, they are implemented di�erently in the two cases. Also,

if anything else than read page() is used while the transaction is active, it is

important to make sure that no other transaction is going to access the page

(neither in active mode nor during patching). The only reason for allowing

calls to modi�cation operations while the transaction is active is to allow

switching to page-level updates for large transactions.

9.3 Data Structures

A BaseTransactionDatabase object contains a list of all active transac-

tions, a lock manager, a list of transactions waiting to be included in the

next commit batch, an incremental page table for patched changes to go

in the next commit batch, and two read/write locks called patch lock and

stability lock.

A BaseTransaction object contains a pointer to the corresponding data-

base object, per-transaction data for the lock manager, the state of the

transaction (active, committed, etc.), and a per-transaction incremental page

table for storing page-level modi�cations made by the transaction.

The incremental page tables contain hL;P i pairs (L is a logical page

number and P is the corresponding new physical page number), and are

implemented as hash tables. They support shared/exclusive-style locking of

68 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

the mapping for an arbitrary L (whether in the table or not; the locking may

be of a coarser granularity than a single mapping). The global incremental

page table in BaseTransactionDatabase is called global remap, and the

local incremental page table in BaseTransaction is called local remap.

To access a logical page, a transaction �rst looks for a mapping for the

page in local remap. If not found, it looks for a mapping in global remap.

If not found, it uses the page table. local remap and global remap thus

act as �lters for the database state the transaction sees.

9.4 Locking Protocols

There are several potential problems which must be avoided using locking

(in this section, locking refers to semaphores

1

and other low-level locks).

1. Old physical page numbers become invalid when the pages are entered

into the page table. The PageTable module will inform the commit

batch via a callback when the pages have become visible through the

page table. After the callback returns, the old physical page numbers

are invalid and the pages can only be accessed through the page table.

2. Patching of changes must be atomic with respect to commit batches

(that is, the changes of a transaction must all be included in the same

batch).

3. If two transactions simultaneously attempt to patch a page for which

there is no entry in global remap, both might create a copy of the

page. Similarly, a page number retrieved from global remap might

become invalid before being used (for example, due to being freed by

another transaction).

4. Latching must be implemented in such a way that a shared latch on

a page means that no-one else can get an exclusive latch on the same

logical page (but a di�erent copy). This is important when using latch

coupling in the implementation of �ne-granularity types.

patch lock is a lock which can be obtained in either shared or exclusive

mode. A transaction locks it in shared mode before it begins patching its

1

In this thesis, a semaphore means any low-level lock, such as a Mutex, SpinLock,

critical section, or whatever. They are distinct from transaction-level locks, no deadlock

detection is done for semaphores, and they are distinct from latches (as used in this paper)

in that they do not imply a reference to a page.

9.4. LOCKING PROTOCOLS 69

changes, and releases it after it has �nished patching. A commit batch locks

it in exclusive mode before determining which transactions to include in the

batch. (Locking patch lock in exclusive mode e�ectively quiesces patching

activity.)

stability lock is a lock which can be obtained in shared or exclusive

mode. It is used to protect the validity of old page numbers on global remap

(problem 1 above). It is used in such a way that stability lock is locked in

exclusive mode only when patch lock is being held in exclusive mode. Thus,

either patch lock or stability lock must be held in shared mode while

using global remap to guarantee that the page numbers do not \disappear"

while they are being used.

The �rst problem is thus solved by holding either patch lock or stabil-

ity lock in shared mode while using page numbers on global remap. The

commit batch will be holding both locks in exclusive mode when it clears

global remap and invalidates the page numbers.

The second problem is solved by quiescing patching before making changes

to the page table. This is done by having transactions lock patch lock in

shared mode while they are patching their changes, and having the commit

batch lock it in exclusive mode when it wishes to quiesce patching.

The third problem is solved by locking the mapping for the a�ected page

in global remap. The mapping is locked in shared mode for read operations,

and in exclusive mode for operations which may change the mapping.

The fourth problem is solved by having allocate physical copy of logical -

page() and allocate physical copy of physical page() wait until all references

to the page have been released.

Locks are always acquired in the following order to avoid deadlocks:

patch lock �rst, stability lock then, and global remap mapping lock

last. It is permissible to not lock some of these, but none of the former may

be requested while any of the \latter" locks are being held by the thread.

There is no need to lock entries in local remap, because a single trans-

action can do only one action at a time.

There is no need to protect against two transactions creating a local page

for a single logical page. This should never happen, because transaction-

level locking should only allow one transaction at a time to do page-level

modi�cations on any given page. However, it is desirable to trap this con-

dition, because it is an indicator of locking bugs in the implementation of

�ne-granularity types.

It is sometimes necessary to hold locks while reading data. It is desirable

to implement these reads in such a way that the read is �rst attempted using

70 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

read physical page no wait() (or its page table equivalent), and if unsuccess-

ful, the locks are released, the page is read into memory, and the operation

is restarted. This has not been described in the next section in order to keep

the pseudocode comprehensible.

9.5 Implementation

This section describes the implementation of each of the operations per-

formed by BaseTransaction. The operations are described in pseudocode.

Error handling and handling pages of di�erent sizes are not included be-

cause they are not essential for understanding the algorithms and would

unnecessarily complicate the pseudocode.

In practice one could �rst attempt reads using the no wait versions of

the functions, and if the page is not in the cache, release all locks, read the

page into the cache, and then retry the operation. This is not shown in the

pseudocode.

9.5.1 commit transaction

commit transaction() works as follows.

Release all shared locks held by the transaction.

Lock patch lock in shared mode.

Merge local remap to global remap.

Call patch changes callback() to patch changes.

Release all locks held by the transaction.

Add the transaction to the commit list.

Wake up the commit thread if it is sleeping.

Unlock patch lock.

Sleep until the commit thread has either committed or aborted

the transaction.

return status.

It is important to notice that patch lock is already locked in shared

mode when patch changes callback() is called, and is thus held when any of

the other functions are called while patching.

The relaxing persistence optimization (Section 8.5) is not included in the

pseudocode for clarity.

9.5. IMPLEMENTATION 71

9.5.2 The Commit Thread

The commit thread works as follows. The code for handling failures and for

terminating the commit thread is not included for clarity.

loop forever

Sleep until work to do.

Lock patch lock in exclusive mode.

Take all transactions from the commit list.

begin update().

for all mappings hL;P i in global remap do

update mapping(L;P).

commit update().

Mark the transactions as committed and wake them up.

During the call to commit update(), the page table module will call a call-

back function provided by the BaseTransaction class after the changes have

been made visible through the page table but have not yet been written to

disk. The callback function works as follows.

Lock stability lock in exclusive mode.

Clear all mappings in global remap.

Unlock stability lock.

Unlock patch lock.

9.5.3 abort transaction

abort transaction() works roughly as follows. The actual implementation is

a bit tricky, because it must handle abortions at di�erent stages of process-

ing, and must handle aborting all transactions. It must also prevent new

transactions from starting while aborting all transactions.

Release all locks held by the transaction.

Call abort changes callback() to free �ne-granularity changes.

Free new pages in local remap.

if the transaction had already started to patch its changes then

Abort all active transactions in the same or any later batch.

Free new pages in global remap.

72 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

9.5.4 read page

During patching read page(L) works as follows. patch lock is held in shared

mode when this code is executed.

Lock mapping for L in global remap in shared mode.

if hL;P i for L in global remap

then R = read physical page(P).

else R = read logical page(L).

Unlock mapping for L in global remap.

return R.

While the transaction is active read page() works as follows.

if hL;P i for L in local remap then

R = read physical page(P).

return R.

Lock stability lock in shared mode.

Lock mapping for L in global remap in shared mode.

if hL;P i for L in global remap then

R = read physical page(P).

Unlock mapping for L in global remap.

Unlock stability lock.

return R.

R = read logical page(L).

Unlock mapping for L in global remap.

Unlock stability lock.

return R.

9.5.5 allocate page

During patching allocate page() works as follows. patch lock is held in

shared mode when this code is executed.

L = allocate logical page number().

P;R = allocate physical page().

Lock mapping for L in global remap in exclusive mode.

Add hL;P i to global remap.

Unlock mapping for L in global remap.

return L;R.

9.5. IMPLEMENTATION 73

When the transaction is active (and using page-level updates) allocate page()

works as follows.

L = allocate logical page number().

P;R = allocate physical page().

Add hL;P i to local remap.

return L;R.

9.5.6 free page

During patching free page(L) works as follows. patch lock is held in shared

mode when this code is executed.

Lock mapping for L in global remap in exclusive mode.

if hL;P i for L in global remap then

free physical page(P).

Change mapping for L in global remap to be hL;nili.

else Add hL;nili to global remap.

Unlock mapping for L in global remap.

When the transaction is active (and using page-level updates) free page()

works as follows.

if hL;P i for L in local remap then

free physical page(P).

Change mapping for L in local remap to be hL;nili.

else Add hL;nili to local remap.

9.5.7 read page for update

During patching read page for update(L) works as follows. patch lock is

held in shared mode when this code is executed.

Lock mapping for L in global remap in exclusive mode.

if hL;P i for L in global remap then

R = read physical page for update(P).

Unlock mapping for L in global remap.

return R.

P

2

; R

2

= allocate physical copy of logical page(L).

Add hL;P

2

i to global remap.

Unlock mapping for L in global remap.

return R

2

.

74 CHAPTER 9. IMPLEMENTING FINE-GRANULARITY LOCKING

While the transaction is active (and using page-level updates) read page -

for update() works as follows.

if hL;P i for L in local remap then

R = read physical page for update(P).

return R.

Lock stability lock in shared mode.

Lock mapping for L in global remap in exclusive mode.

if hL;P i for L in global remap then

P

2

; R

2

= allocate physical copy of physical page(P).

Unlock mapping for L in global remap.

Unlock stability lock.

Add hL;P

2

i to local remap.

return R

2

.

P

2

; R

2

= allocate physical copy of logical page(L).

Unlock mapping for L in global remap.

Unlock stability lock.

Add mapping hL;P

2

i to local remap.

return R

2

.

Chapter 10

B-Tree Index Management

B-trees are a widely used access method in databases. This section describes

how to use the �ne-granularity locking framework of Section 8 with B-trees.

The solution is nicely structured, with recovery implemented by shadow

paging as described earlier, �ne-granularity updates implemented using the

data structures and algorithms described in this section, and the transaction-

level locking protocol implemented as the highest level layer above the others.

The overall structure of the solution is shown in Figure 10.1; each layer builds

on the services provided by the layers beneath it.

10.1 Background

B-trees were introduced in 1972 by Bayer and McCreight [9]. A more theo-

retical analysis was presented in [8]. The B-tree received lots of interest, and

many papers were published in the next few years. Knuth [45, pp. 471{479]

gives a good presentation of the early work, including the B

�

-tree (nodes at

least

2

3

full) and B

+

-tree (all data is in leaf nodes) variants (although the

name B

+

-tree came to use later; [18] discusses some of the confusion about

the names).

Bayer and Schkolnick [10] presented in 1977 some schemes for concurrent

operations on B-trees. Guibas and Sedgewick [34] presented the top-down

approach (see also [73]). Lehman and Yao [52] presented B

link

-trees, where

much of the locking is avoided by the addition of an extra link in each node.

Lanin and Shasha [51] presented an improved version of B

link

-trees. The

idea of a separate process for rebalancing the tree was introduced by Sagiv

[93], and generalized by Nurmi and Soisalon-Soininen [76, 77] (see also [41]).

75

76 CHAPTER 10. B-TREE INDEX MANAGEMENT

Underlying B-tree implementation

Transaction B-tree interface

Transaction-level locking protocol

B-tree updates in main-memory

BaseTransaction - recovery

FGBTree

fine-granularity

type

Figure 10.1: Layers of the Shadows system around the implementation of

B-tree management.

Eiter, Shre
 and Stumptner [24] compare the operation of di�erent B-tree

concurrency control algorithms.

Mathematical analyses of the dynamics of B-trees have been presented

e.g. by Zhang and Hsu [110], Baeza-Yates [6], Johnson and Shasha [39], and

Matsliasch [63]. Srinivasan and Carey [97] have simulated B-tree concur-

rency control algorithms and found the B

link

-tree [52] to perform best.

Solutions for building indexes for very large tables without preventing

concurrent updates to the table have been considered in [68, 98]. Batching

B-tree updates has been studied in [19, 50, 81, 82, 103, 104].

Most work on concurrent use of B-trees has ignored transaction recovery

and isolation issues. Transactions have been assumed to consist of just a

single B-tree operation. Recent work [33, 53, 54, 58, 59, 65, 67] has also

considered recovery and isolation issues in log-based databases.

10.2 Operations on B-Trees

Operations supported by B-trees are described below. In the terminology

used here, the B-tree contains arbitary records, part or all of the record being

the B-tree key. The record may be a database record, or a hkey;RIDi pair

for a secondary index. All records are assumed to have a unique B-tree key.

read unique(key) Returns the record having the speci�ed key, or an error

if the speci�ed record does not exist.

10.3. LOCKING PROTOCOLS FOR ORDERED LISTS 77

read next(key) Returns the record with the smallest key greater than the

speci�ed value, or an error if there are no such records. One should

note that this operation is not considered in many papers on B-trees.

However, this operation is necessary in practical databases (e.g., for

the implementation of scans).

insert(record) Adds a new record to the index. Returns an error if the

speci�ed record already is in the index.

delete(key) Deletes the record identi�ed by the key, or returns an error if

it does not exist.

update(key, �eld, operation) Performs a commutative update on the

speci�ed �eld of the record with the speci�ed key value. Returns an

error if the record does not exist. Note that even though the same

operation could be performed by querying the old value of the record,

deleting the record, and inserting it with the new contents, this oper-

ation permits locking optimizations which may be very important in

hotspots.

write(key, �eld, value) Writes a new value to the speci�ed �eld of the

record with the speci�ed key value. Returns an error if the record

does not exist. Note that even though the same operation could be

performed by querying the old value of the record, deleting the record,

and inserting it with the new contents, this operation may permit

optimizations.

One should note that general purpose database systems (particularly,

the SQL standard [101, 38]) require that transactions can consist of an arbi-

trary number of queries or updates. It must thus be possible to group these

basic operations (including range queries) arbitrarily into atomic transac-

tions. Recovery mechanisms must guarantee the atomicity and durability of

arbitrary transactions consisting of these operations.

10.3 Locking Protocols for Ordered Lists

There are some general locking algorithms for ordered lists of values [33, pp.

411{414]. The B-tree is a special case of an ordered list.

Ordered lists have the following operations: read unique (return a

record, X, given its key), read next (return the next record, Y, after the

78 CHAPTER 10. B-TREE INDEX MANAGEMENT

record X), read previous (return the previous record W, before the record

X), insert (insert record X between W and Y), and delete (delete record

Y). Additionally, we can consider the update and write operations above.

(Note that in this section only one operation will be assumed to be in progress

at any time; having several of these operations in progress simultaneously

will be considered in Section 10.8.)

The primary purpose of locking is to prevent phantoms (that is, records

that seem to appear or disappear mysteriously, causing inconsistent results).

This is equivalent to providing repeatable reads.

Phantom records arise in the following cases [33, p. 411]. If transaction

T performs a read unique of record X, and it is not found, T must prevent

others from inserting phantom record X until T commits. If T is at record

W and does a read next to get record Y, then W and Y cannot change; in

addition, no one may insert a new record (phantom record X) between W

and Y, until T commits. A similar situation occurs with read previous. If

T inserts record X, other transaction should delete X until T commits. If

T deletes record Y (between X and Z), no other transaction should insert

a phantom Y, until T commits. In addition, no other transaction should

notice that the original Y is missing and that Z is now immediately after X,

until T commits.

10.3.1 Key-Range Locking

The idea of key-range locking [33, pp. 411{412] is that the range of possible

key values is divided to a set of �xed key ranges [R, S). A lock on the key

starting the range is used to represent the whole range. The key ranges

are thought of as predicate locks covering the records in the range. Multiple

granularities of locks can be supported by using the granular locking protocol

with ranges of di�erent granularity.

A read unique locks the range containing the key in shared mode (re-

quests a shared lock on the starting key of the range). A read next from

W to Y locks all key ranges in the range from W to Y in shared mode. The

insert of X and the delete of Y both lock the key range containing X or Y,

respectively, in exclusive mode.

10.3.2 Dynamic Key-Range Locking

Static key-range locking works, but is not adaptive with respect to skewed

key distribution. Next-key locking and previous-key locking are varieties of

10.3. LOCKING PROTOCOLS FOR ORDERED LISTS 79

key-range locking that have a unique range between any two consecutive

records in the �le. In previous-key locking, the transaction requests a lock

on the key value of X to lock the key range [X,Y). In next-key locking the

range is (X,Y], and Y represents the range.

Dynamic key ranges appear and disappear as keys are inserted and

deleted. This makes the locking protocol more complicated than static key-

range locking [33, pp. 412{413]. The operation of previous-key locking is

shown below; next-key locking works analogously.

read unique If the read unique operation �nds the record X, it gets a

shared lock for T on the key. That lock prevents anyone else from

updating or deleting the record until T commits. Actually, since the

shared lock on X is a key-range lock on [X,Y), it also prevents inserts

in that key range.

If the record is not found, the read operation must prevent a phantom

insertion of X by another transaction prior to T's commit. To do this,

the read locks the current key range that would hold X. This key range

is named by the key immediately before the phantom X. Suppose the

value X falls between keys with values W and Y. Then the range is

[W,Y), represented by W. A shared lock is requested on W to prevent

others from inserting a phantom X.

read next Consider the case that transaction T is currently reading the

record X and requests the next record Y in the ordered list. T already

hold a lock on X, and thereby holds a lock on the range [X,Y). All T

needs, then, is to request a shared lock on key Y. Read previous can

be implemented correspondingly.

insert Inserting a new record in a key range splits the range in two. Insert-

ing X into [W,Y) creates two key ranges [W,X) and [X,Y). First, the

old key range [W,Y) must be locked in exclusive mode to ensure that

it is not locked by another transaction. Then, the key range [X,Y)

should be locked in exclusive mode. There is a subtle reason for this

second lock: if another transaction reads the [X,Y) range, the access

mechanism will see X in the list and attempt to get a key-range lock

on [X,Y) rather than on [W,Y). T's lock on [X,Y) causes this second

transaction to wait for T to commit. The record is inserted when both

locks have been obtained.

80 CHAPTER 10. B-TREE INDEX MANAGEMENT

delete The protocol for deleting a record is analogous to that for inserting

a record. Delete merges two key ranges. To delete key Y from the

sequence X,Y,Z, �rst lock Y (key range [Y,Z)) in exclusive mode, then

lock key X (which is old key range [X,Y), soon to be key range [X,Z))

in exclusive mode. When these two locks are granted, perform the

delete.

There is one troublesome point [33, p. 413]: if a key-range lock has to

wait to be granted, then when it is granted, the key range may have dis-

appeared. Consider, for example, the insert operation. Suppose that after

the insert, a second transaction tries to read the record previous to Y. In

that case it will wait for the [X,Y) key-range lock, which is currently held by

the insert transaction. If the insert transaction aborts, the insertion will be

undone, and the key-range will return to [W,Y). To deal with this, any trans-

action that waits for a key-range lock should revalidate the key range when

the lock is granted. If the key range has changed, the transaction should

release the lock and request a lock for the new key range. (Alternatively, it

can simply restart the operation and it is likely succeed this time; however,

this approach may require additional precautions to prevent starvation in

hotspots.)

10.3.3 Separate Lock Modes for the Range

The next-key and previous-key protocols always lock the associated range,

even if only the speci�c key value should be locked. This somewhat reduces

the available concurrency.

Concurrency can be improved by having two separate lock modes for

each key: one for the key itself, and one for the range that the key implies

[59]. This can be implemented without modi�cations to the lock manager,

e.g., by adding an indicator to the lock name specifying whether it is a lock

for the key itself or for the corresponding range.

10.4 Secondary Indexes

Most of this section only considers unique indexes. However, similar algo-

rithms can be used for secondary indexes as well. A secondary index contains

records in the format hkey;RIDi

1

, where the key need not be unique. The

1

RID is Record Identi�er, a unique iden�er for the record in the database. The record

identi�er may contain a page number and in indenti�er inside page, the value of the

10.5. DATA-ONLY LOCKING 81

update and write operations are not possible for secondary indexes.

A secondary index can be implemented most easily by concatenating

the key and the record identi�er to form the B-tree key. All queries are

transformed into range queries.

All of the algorithms in this section can be used unchanged for secondary

indexes when they are implemented this way. A B-tree with pre�x omission

[17] should probably be chosen as the underlying B-tree.

10.5 Data-Only Locking

When records are not stored directly in the index, and especially if there

are many secondary indexes, it is bene�cial to lock the actual data records

instead of locking the key values [67]. This eliminates the need use DAG

locking when records are accessed using several paths.

Data-only locking can be used with either next-key or previous-key lock-

ing. It can be seen as an optimization of the protocols, and can be imple-

mented with a small modi�cation to the locking functions. It cannot be used

directly when there are separate lock modes for the ranges (when there are

several secondary indexes, there are several ranges corresponding to each

key; however, one could imagine using data-only locking for locks on keys,

and ordinary locking for ranges).

10.6 Cursor Stability Locking

Cursor stability locking means that the record currently under cursor is

locked for the transaction; however, shared locks are released as soon as the

cursor moves away from the record. Exclusive locks are held until transaction

commit.

Cursor stability can be supported trivially by releasing the shared lock on

the key previously under the cursor when the cursor moves. For simplicity,

cursor stability locking is not shown in the pseudocode.

primary key of the record, or some other data that is needed to identify the record in the

database.

82 CHAPTER 10. B-TREE INDEX MANAGEMENT

10.7 Lock Escalation

It is desirable to switch to a coarse granularity of locking after a transaction

has done very many reads or modi�cations, both to reduce locking overhead

and to avoid excessively long commit times as the modi�cations are merged

to the index on disk.

Without predicate locking, B-trees do not easily support other locking

granularities than record level locks, �xed key ranges, and index-level locks.

If a transaction has done excessively many read operations, it will obtain

a shared coarse-granularity lock. Updates by the transaction will still be

done using �ne-granularity locking.

Lock escalation for updates is slightly more complicated, since this in-

volves both escalating the locks and starting to use page-level updates for

all or part of the index (cf. Section 8.6).

When a transaction has done a certain number of modi�cations, its locks

are escalated to a coarser granularity. However, the �ne-granularity locking

framework of Section 8 requires that only a single transaction may perform

page-level modi�cations on a page. Thus, it must be possible to determine

which pages of the index are protected by the coarse-granularity lock, even

after arbirarily many B-tree reorganizations. This is trivial for the lock on

the whole index (all pages of the index are covered by the lock), but di�cult

for intermediate level locks (e.g., on �xed key ranges). One solution is to

have a separate B-tree for each key range.

Once a coarse-granularity lock has been obtained, all changes to the

physical pages covered by that lock can be patched to the B-tree on disk.

All further updates to the key range covered by the lock are made directly

to the B-tree.

Transactions should record the modes in which they hold coarse-granu-

larity locks and only call the lock manager if they do not already have the

lock.

10.8 Operations Required by the Implementation

of Locking Procotols

The implementation of locking protocols requires the following operations

from the B-tree management component: read unique, read next, read

previous, insert, delete, update, and write. These operations do not

perform any transaction-level locking. Their e�ects become immediately

10.9. IMPLEMENTATION OF FINE-GRANULARITY UPDATES 83

visible to other transactions. Several of these operations can be active con-

currently, and they are performed atomically. Latches are used for synchro-

nization.

However, there is a problem that needs to be considered. The imple-

mentation of the locking protocol uses the read next (or read previous)

in several places to determine the key to be locked. Also, the read unique

operation behaves di�erently depending on whether the key was found. It is

possible that another transaction performs an insert or delete that changes

the situation for the other operation before it has obtained transaction-level

locks.

The abovementioned locking protocols may, in the worst case, have to

perform a read unique followed by a read next (or read previous), as a

single atomic operation. In the B

+

-tree, this means having at most two nodes

latched. This can be implemented fairly easily, but the B-tree interface must

support this. Similar synchronization is needed for the main-memory data

structures. A separate release interval call is used to release the interval

when it has been protected by transaction-level locks.

One has to be careful to avoid potential latch deadlocks. There is no

problem if one uses next-key locking and only supports the read next op-

eration, or uses previous-key locking and only supports read previous.

Supporting both directions may require requesting the second latch in condi-

tional mode, and releasing everything and retrying if the latch is not granted.

See Section 10.12.

10.9 Implementation of Fine-Granularity Updates

As was discussed in Section 8, �ne-granularity locking with shadow paging

requires storing the updates in main memory until the transaction has com-

mitted. The view shown to the locking protocol, on the other hand, contains

both the permanent database and any uncommitted changes.

Uncommitted changes are kept in a main memory data structure. There

is one such data structure for each B-tree; the same data structure is shared

by all transactions. (However, when snapshots are introduced in Section 11,

each snapshots has its own data structures.)

The data structure must have the following properties:

� E�cient access by key value.

� E�cient listing of all entries owned by a transaction.

84 CHAPTER 10. B-TREE INDEX MANAGEMENT

Tr3

Tr2

Tr1

Key1 Key2 Key3 Key4

Figure 10.2: Data structure for storing �ne-granularity changes for B-trees.

� E�cient insertion of new entries.

� E�cient deletion of all entries owned by a transaction.

� E�cient access to the next/previous key in key value order.

� Several transactions may have an entry for the same key value.

� The data structure is accessed concurrently.

The basic data structure used to store the changes is shown in Figure

10.2. Boxes on the left are per-transaction B-tree handles, boxes on the top

are key values, and boxes in the middle are individual updates. The updates

are stored in a chain attached to the key value.

There are three kinds of lists connecting the objects (shown as thick lines

in Figure 10.2). One list connects all key value nodes in key value order. It

is used to �nd the key value node by key value and to �nd the next/previous

key node. A skip list [85, 86, 87] provides e�cient implementations for

searches, deletions, insertions, and for �nding the next key, and it is e�cient

and easy to implement. Another alternative would be a balanced tree, but

they may be more complicated and potentially less e�cient.

Another list connects all updates made by a transaction. It is necessary

to be able to traverse through the list. It need not be ordered. The whole

list is released at once. A simple linked list is su�cient.

There is a list for each key value containing the updates made to the

record identi�ed by that key value. New entries are appended to the list,

10.9. CONCURRENT ACCESS TO MAIN-MEMORY ... 85

and it is released all at once. A simple linked list (with a tail pointer) is

�ne. This list will be very short most of the time, typically a single entry.

However, there may be several entries if the transaction modi�es the same

record several times, or if there are several commutative updates to the same

record by di�erent transactions.

There is a global object (per snapshot) describing each B-tree in the

system. That object contains the key list.

Each transaction has a per-transaction handle object for each B-tree that

it accesses. These objects correspond to the boxes on the left in Figure 10.2.

Each B-tree update object (the boxes in the middle in Figure 10.2) con-

tains the following information.

key Back-pointer to the key object containing this update.

type Type of the operation: INSERT, DELETE, UPDATE (commutatively

updating the value of a �eld), or WRITE (overwriting the value of a

�eld).

data Data needed for performing the operation. For INSERT this is the

new record; for UPDATE this identi�es the �eld and the operation to

be performed; for WRITE this identi�es the �eld and gives the new

contents of the �eld. No data is needed for DELETE.

10.10 Concurrent Access to Main-Memory Data

Structures

The list of key values is accessed concurrently by many transactions, and

there are concurrent insertions, deletions and queries (including queries for

the next key). Algorithms for concurrent use of skip lists have been presented

in [85]; concurrent algorithms for tree structures can be found in [26, 25, 47,

62, 76].

The list of updates made by a transaction is not updated concurrently.

No locking is needed for it.

The list of updates for a key value might be accessed by several transac-

tions; however, the concurrency requirements are not high. The best way to

protect the list may be to share semaphores with the list of key values (one

has to be careful to avoid race conditions in deletions and insertions). The

exact implementation depends on the data structures and synchronization

protocols used.

86 CHAPTER 10. B-TREE INDEX MANAGEMENT

10.11 Underlying B-Tree

It is important to notice that the implementation of recovery and transaction-

level �ne-granularity locking does not constrain the implementation of the

underlying B-tree. Almost any variant of B-trees can be used, with latches

used for what is conventionally called locking in the context of B-trees. This

separation signi�cantly simpli�es the implementation and permits one to

choose the most appropriate B-tree variant. The current implementation

uses B

link

-trees, but this is by no means the only possibility.

The following operations must be implemented by the underlying B-tree:

read unique reads a record with a speci�c key value, read next returns

the record with the next higher key value, read previous returns record

with the next smaller key value, insert inserts a new record, delete deletes

a record, update commutatively updates the contents of a �eld, and write

writes a new value to a �eld.

All read operations leave the relevant leaf node latched until release

interval is called. It is permissible to follow a read unique by one call to

either read next or read previous, always the same direction for the same

B-tree (cf. Section 10.12). This permits the read unique and the following

read next or read previous to be performed as a single atomic operation.

The underlying B-tree is implemented using the services provided by the

BaseTransaction class (Section 9.2). This means that page-level updates are

used in the underlying B-tree implementation, and its functions can only be

called while patching �ne-granularity changes to the global database, or if

the transaction is using page-level updates.

One should note that no special handling is needed for B-tree structure

modi�cation operations (node splits or merges). Structure modi�cations

are only done during patching, or when a transaction is doing page-level

updates. The �ne-granularity locking framework will guarantee that the

structure modi�cation operation is done atomically. Since locks and changes

in main memory only use logical identi�ers (no references to speci�c pages),

and there is no log with references to speci�c pages, no-one cares about

which page each record resides on. Normal latching is used to guarantee the

consistency of individual B-tree operations.

10.12. SUPPORTING BOTH READ NEXT AND READ PREVIOUS 87

10.12 Supporting Both Read Next and Read Pre-

vious

No deadlock detection is used for latches, and deadlock prevention must

therefore be used. This is most easily done by acquiring latches always in

the same order.

If only the read next operation is supported and next-key locking is

used, all accesses are in the same direction. The situation is similar if only

read previous is supported and previous-key locking is used.

To support both read next and read previous, either operation will

need to acquire latches in the \wrong" direction. To prevent deadlock, one

can request the latch in \don't wait" mode, and back o� if the latch cannot

be taken. There are several possible recovery actions:

� Release all latches, and restart the entire operation. This is simple,

but may lead to starvation in hotspots.

� Release some or all latches, and reacquire them in the proper order.

After the latches have been acquired, validate that they are still the

correct latches (the B-tree leaf might have been split in the meanwhile).

If they are no longer valid, restart the operation.

For many systems it is su�cient to support only one of read next and

read previous, and choose the locking protocol accordingly. This is the

approach taken in [65].

10.13 Pseudocode for the Locking Protocols

Pseudocode is given below for the implementation of the next-key locking

protocol.

For simplicity, lock escalation is not shown in the pseudocode (cf. Section

10.7). Also, releasing latches when a lock request blocks is not shown. Read

previous is not shown.

10.13.1 Read Unique

Read unique(X):

status,record = read � X

if (status == found and record == X)

88 CHAPTER 10. B-TREE INDEX MANAGEMENT

lock shared X

release interval

RETURN record

if (status == found)

lock shared record

else

lock shared "end of index"

release interval

return \not found"

10.13.2 Read Next

Read next(X):

status,record = read > X

if (status == found)

lock shared record

release interval

return record

lock shared "end of index"

release interval

return \not found"

10.13.3 Insert

Insert(X):

status,Y = read > X

if (status == found)

lock exclusive Y

else

lock exclusive "end of index"

lock exclusive X

release interval

insert X // may fail

10.13.4 Delete

Delete(Y):

10.13. PSEUDOCODE FOR THE FINE-GRANULARITY ... 89

lock exclusive Y

status,Z = read > Y

if (status == found)

lock exclusive Z

else

lock exclusive "end of index"

release interval

delete Y // may fail

10.13.5 Update

Update(X, �eld, operation):

status,record = read � X

if (status == found and record == X)

lock exclusive X

release interval

return update X, �eld, operation

if (status == found)

lock shared record

else

lock shared "end of index"

release interval

return \not found"

10.14 Pseudocode for the Fine-Granularity Up-

date Level

This section shows the implementation of the operations used by the locking

protocols. These in turn use operations provided by the main-memory data

structures and the disk-based B-tree.

10.14.1 Read CC

Note: CC is either > or �.

Read CC:

status1,record1 = read CC from btree

status2,data = read CC from main memory

90 CHAPTER 10. B-TREE INDEX MANAGEMENT

select smaller, or combine if equal

release larger

note which is locked

return smaller

10.14.2 Release Interval

Release interval:

release noted latches

10.14.3 Insert

Insert(X):

status,Y = read � X from btree

if (status == found and Y == X)

release btree

return "already exists"

status = insert X in main memory // may fail if exists

release btree

return status

10.14.4 Delete

Delete(X):

status,Y = read � X from btree

if (status == not found or Y != X)

// not found in B-tree

status,Y = read � X from main memory

if (status == not found or Y != X)

release main memory

release btree

return "not found"

release main memory

delete X in main memory

release btree

10.15. POTENTIAL OPTIMIZATIONS 91

10.14.5 Update

Update(X):

status,Y = read � X from btree

if (status == not found or Y != X)

// not found in btree

status,Y = read � X from main memory

if (status == not found or Y != X)

release main memory

release btree

return "not found"

release main memory

update in main memory

release btree

10.15 Potential Optimizations

All of the existing locking protocols for B-trees make the following assump-

tions about the underlying system:

� The e�ects of insertions, deletions, and updates become visible imme-

diately.

� It is not possible for a transaction to see a key which has been deleted

but whose deletion has not yet been committed.

� Other transactions see keys which have been inserted but not yet com-

mitted.

� Updates become visible to other transactions immediately, even while

uncommitted.

In most log-based systems without multi-version concurrency control,

it is not feasible to have a radically di�erent set of assumptions. These

assumptions are easily satis�ed with shadow paging as well (as was done

in this chapter). However, it is also possible to make a di�erent set of

assumptions:

� The e�ects of insertions, deletions, and updates are kept on a sepa-

rate data structure until the transaction commits. The system can

92 CHAPTER 10. SNAPSHOTS

choose, individually for each update or transaction, whether it wants

the transaction to see the current uncommitted state or the last com-

mitted state, or something in between.

� A transaction can see any deleted (but uncommitted) keys if it so

desires.

� Transactions can choose not to see uncommitted insertions.

� Transactions can choose to see or not see uncommitted updates.

The �rst set of assumptions means that the order of the two transactions

becomes �xed when their locks �rst con
ict. The second transaction will

have to wait until the �rst transaction has completed.

However, with the second set of assumptions, when the �rst con
ict is

detected, it is possible to read either the old or the new value of the record.

This permits the scheduler to decide a serialization order for the transactions.

Whenever these transactions con
ict, the value to read is chosen according

to the selected serialization order. Blocking is necessary only in the case

that a new con
ict would create a circle in the serialization graph.

Another possibility for optimization is storing the locks themselves in the

B-tree data structures. This would avoid calling the lock manager (which

keeps data structures that essentially parallel those of the B-tree module,

except that the B-tree module does not ordinarily need to keep entries for

keys that have only been read), and would save some memory space. It would

also permit separate modes for the range locks fairly easily and e�ciently.

Both of these optimizations are beyond the scope of this thesis.

Chapter 11

Snapshots, Read-Only

Transactions, and

On-The-Fly Multi-Level

Incremental Dumping

11.1 Introduction

A snapshot is a transaction-consistent

1

copy of the database [1]. Shadow

paging allows taking transaction-consistent snapshots of the entire database

by saving the address of the page table and preventing freeing of pages

referenced from the snapshot [105, 107].

There is not much previous work on snapshots with shadow paging. In

System R [32] shadows were used for checkpointing, but their approach does

not allow more general snapshots. Other work on snapshots [1, 40, 56] in-

volves actually copying the data or using the log to access old versions;

in those approaches the creation, deletion, refreshing, or accessing of snap-

shots is very expensive. Object-level versions are commonly used in object-

oriented databases, and a snapshot-like interpretation for them has been

discussed in [14]. The approach presented here is, to the author's best knowl-

edge, completely new.

The problems in supporting snapshots e�ciently include

1

Transaction-consistent means that all transactions are either fully re
ected in the

copy, or not at all. No e�ects of uncommitted or aborted transactions will be visible in a

transaction-consistent copy.

93

94 CHAPTER 11. SNAPSHOTS

CurrentSnapshot7Snapshot6Snapshot5Snapshot4 state

Time

Figure 11.1: Snapshots represent consistent database states as of some time

in the past.

1. determining when a page can be freed (i.e., when is the last reference

to the page removed),

2. determining which locations to check for modi�ed pages when dropping

a snapshot without scanning the entire page table,

3. how to support modi�cation of snapshots, and

4. how to make snapshots permanent.

11.2 Freeing Physical Pages

The primary problem with snapshots is determining when a page can be

freed. It turns out that the properties of shadow paging allow a very e�-

cient implementation. From within a single snapshot a physical page can be

referenced only once (multiple references to the same physical page from sev-

eral logical pages are not allowed). It is also not possible to move a physical

page from one logical location in the database to another logical location.

This means that if a page, which is referenced from one snapshot, is also

referenced from some other snapshot, that reference must be from the same

logical location. For data pages this means the same logical page; for page

table pages this means the page table pages mapping the same logical pages.

All active snapshots in the system form a chain in chronological order

(Figure 11.1). The immediate predecessor of a snapshot in this chain will be

called the parent of the snapshot, and the immediate successor will be called

a child of the snapshot. Only the current database state can be modi�ed.

If a snapshot has a reference to a page, the page must either also occur in

the parent snapshot, or it must have been created during the time interval

between taking the parent snapshot and the current snapshot. Thus, to

determine whether a page can be freed, it is only necessary to check whether

the timestamp of the page was newer than the timestamp of the previous

snapshot.

This algorithm is used to free the old versions of data and page table

pages after a commit batch has committed successfully. The modi�ed pages

11.3. DROPPING SNAPSHOTS 95

of an aborted transaction can always be freed without any checking, because

they have not been made visible to other transactions.

11.3 Dropping Snapshots

Snapshots should be dropped as soon as there are no references to them

in order to release their disk space. It is possible to scan all pages in the

snapshot and use the timestamps to determine whether each page can be

freed, but in practice this would be too costly. More e�cient methods are

possible.

11.3.1 Change Sets

A page can di�er in a snapshot and its parent (note that the current database

state is also seen as a snapshot in this context) only if it has been modi�ed

during the interval between taking the snapshots. It is possible to record

in the chronological chain of snapshots the set of logical pages that have

changed between two consecutive snapshots. The change sets can be used

to e�ciently determine which pages need to be freed. The method directly

gives the set of pages that need to be freed as the intersection of the left and

the right change sets of the snapshot being dropped.

There are three things to consider here: modifying the current database,

taking a new snapshot, and dropping a snapshot. The snapshots are assumed

to form a chain in chronological order (Figure 11.1). Associated with each

link is a set of logical page numbers that had been modi�ed (created, deleted,

or updated) between taking the two snapshots. For simplicity of description,

an imaginary snapshot is assumed at in�nity in the past and at in�nity in

the future. The sets associated with the imaginary links from the in�nite

past and the in�nite future contain all possible logical page numbers.

Whenever any modi�cation is made to the current database, the number

of the logical page number which was modi�ed is added to the left change

set of the current database state.

A new snapshot can be added in the chain immediately on the left side of

the current database state. E�ectively the link between the previous newest

snapshot and the current state becomes the link between the previous newest

snapshot and the new snapshot, and it retains its change set. A new link is

created between the new snapshot and the current state; the change set of

this link is initially empty.

96 CHAPTER 11. SNAPSHOTS

Pages may need to be freed when dropping snapshots. A page was inher-

ited from the parent snapshot if it was not changed between the snapshots

(it is not in the change set associated with the link). Correspondingly, it has

been inherited to the child if it has not been changed between the snapshot

and the child. The page has no other references if it is inherited neither from

the parent nor to the child. Thus, the pages that can be freed are those in

the intersection of the left and the right change sets of the snapshot, and

any page table pages used for mapping those pages.

There are some implementation problems in using this approach directly.

One issue is maintaining the change set. If it is in main memory, it can grow

rather big. If the snapshots are permanent (Section 11.5), the change sets

must also be permanent and thus saved to disk at every commit batch (which

is slow if the change set is big; however, some kind of an incremental ap-

proach might be workable). There are also update problems: modi�cations

to the change set must be written to disk before the page table address is

written; however, those changes should become visible only after the page

table address has been written. Additionally, the change set can become very

large in some applications, and it must be processed e�ciently. For example,

two change sets need to be merged when dropping snapshots. Putting all

the complications together, it may be rather di�cult to use change sets in

an actual system.

11.3.2 Timestamps in Page Table Entries

A suprisingly simple implementation of the change sets is to store the time-

stamp of the last modi�cation in every page table entry. The timestamp

is the sequence number of the last commit batch which has modi�ed the

entry. Higher-level page table pages also contain a timestamp in each entry,

indicating the maximum value of any timestamp in the subtree pointed to

by that entry.

The sequence number of the last transaction included in each snapshot

is stored with the snapshot. It is possible to reconstruct the change sets by

traversing the page table (but this is not necessary in practice): the change

set includes those logical pages that have changed after the timestamp of the

previous snapshot. The timestamp of the imaginary \in�nite past" snapshot

is negative in�nity, and the timestamp of the \in�nite future" snapshot is

positive in�nity.

A changed page can be freed if its old timestamp was newer than the

timestamp of the previous snapshot. There are no problems with page ta-

11.4. MODIFYING SNAPSHOTS 97

ble pages: they also have timestamps (either in the higher-level page table

entries pointing to them or in the page table pointer), and it can thus be

directly determined whether the page table page is newer than the newest

snapshot.

Taking a new snapshot is trivial; the current timestamp is just recorded

in the new snapshot and the new snapshot is added to the chronological

chain.

Dropping a snapshot is a little more complicated. All those pages should

be freed that are newer than the timestamp of the previous snapshot, and

older than the corresponding page in the following snapshot. These pages

can be found by traversing the page tables of the dropped and the follow-

ing snapshot in parallel and comparing the timestamps; however, since the

timestamps in higher-level page table pages contain the maximum of any

timestamp in the corresponding subtree, only those subtrees need to be tra-

versed which contain changed pages. If the database is large and there are

relatively few changes (or the changes are localized in some parts of the

database), only a small fraction of the entire page table needs to be tra-

versed. The pseudocode for this operation is shown in Figure 11.2.

11.4 Modifying Snapshots

It is possible to modify a snapshot. The snapshot behaves like a copy-on-

write

2

copy of the database. From the user's point of view, each snapshot

is an independent copy of the database. It is possible to make modi�cations

to the copy, and these modi�cations will not a�ect other copies. No syn-

chronization of transactions is required between two copies, and the copies

diverge as more modi�cations are made.

Such modi�able snapshots are called versions of the database. They are

di�erent from ordinary object-level versions in that they are global, and

object-level versioning may be used together with database versions if de-

sired. A similar concept has been used in [14] for version identi�cation in

the context of object-oriented databases; however, their implementation is

entirely di�erent.

The versions and snapshots of a database form a tree (Figure 11.3) as

opposed to the linear chain of snapshots (Figure 11.1). Only snapshots with

2

Copy-on-write means that a page is not copied immediately. Instead, the same page

is shared by all versions, and a private copy is made when the page is �rst modi�ed.

98 CHAPTER 11. SNAPSHOTS

drop unreferenced pages(pt left, pt drop, pt right):

drop traverse(pt drop.root, pt drop.timestamp,

pt right, pt left.timestamp, 0,

pt drop.depth)

drop traverse(subtree, subtree timestamp, pt right,

left timestamp, L, level):

if subtree = nil

then return

if subtree timestamp � left timestamp

then return

if subtree timestamp � timestamp on level(pt right, L, level)

then return

if level > 0 then

R = reference to page subtree

for i = 0 : : :N� 1 do

E = R.entries[i]

LL = L + i N

level�1

drop traverse(E.physical, E.timestamp, pt right,

LL, level - 1)

Release R.

Free the physical page subtree.

Figure 11.2: Pseudocode for dropping a snapshot using timestamps to de-

termine which pages to free. timestamp on level() returns the timestamp

of the page table entry corresponding to the speci�ed page on the speci�ed

level of the page table (if the requested level is higher than the depth of the

page table, it returns the timestamp of the page table pointer). Its imple-

mentation would be incremental in practice, exploiting information from the

previous call.

11.4. MODIFYING SNAPSHOTS 99

Snapshot4 Snapshot9

Snapshot25 Current state 3

Current state 2

Current state 1

Figure 11.3: Versions of a database form a tree. Implicit snapshots are

retained of all forking points.

no children can be modi�ed; if a snapshot with children is to be modi�ed, a

new snapshot can be taken from it and that snapshot modi�ed.

The tree can be seen as a collection of chains of snapshots, where the older

ends of the chains have nodes in common. All the algorithms in Sections

11.2 and 11.3 can be used.

It is not permissible to drop a snapshot which has more than one child

(a forking point in the tree). If dropping such snapshots were allowed, the

assumption that other references must be either from immediate parent or

immediate child would no longer hold, and the algorithms described in this

paper would not work. A forking point can be dropped when it no longer

has more than one child and has no other references.

11.4.1 The Logical Free List

The free list of logical page numbers is independent in each snapshot, and

can be very large. Also, the list must be copied when taking a snapshot, and

freed when releasing a snapshot. However, in most cases the snapshot will

not be modi�ed or only a small fraction of it will be modi�ed. If garbage

collection is available, the problem is trivial (just copy the pointer and never

modify the nodes). However, most database systems use explicit memory

management, and di�erent mechanisms must be used to avoid the linear

copy and free times for a normal list.

One possible solution is to use reference counting. Four operations are

done on the logical free list: get (returns a number from the list), put (adds

100 CHAPTER 11. SNAPSHOTS

1

1

1

1

2

3 2 1 1

snapshot 1

snapshot 2

snapshot 3 snapshot 4 snapshot 5

Figure 11.4: The logical free list data structure and its reference counts in

the presence of multiple snapshots.

a number to the list), copy (returns a copy of the list), and free (frees

the entire list). All these operations can be implemented with O(1) time

complexity, except for free which has a linear worst case.

Each node has a reference count which indicates how many direct pointers

there are to the node. A pointer may be either from another node or from

a snapshot. The data structure is partially shared between copies (Figure

11.4). A node can be freed when its reference count becomes zero.

Get decrements the reference count of the current node and moves the

current node pointer to point to the next node. If the reference count of the

old current node reaches zero, it is freed; otherwise the reference count of the

new current node is increased (note that it is not increased if the previous

node was freed). The page number from the old current node is returned.

Put creates a new node containing the given page number. The next

pointer of the node will be set to point to the old current node, and the new

node will be made the current node. The reference count of the new node is

initialized to one.

Copy increments the reference count of the current node. The returned

new list is actually the same as the old list (but they have independent

current pointers).

Free decrements the reference count of the current node. If the refer-

11.5. PERMANENT SNAPSHOTS AND VERSIONS 101

ence count reaches zero, the node is freed and the next node is made the

current node. This is continued until the reference count is not zero after

decrementing, or the end of the list is reached.

11.4.2 Other Main Memory Data Structures

There may also be other main memory data structures associated with a

snapshot. They may require special handling to allow modi�cation of snap-

shots. Small data structures can simply be copied; larger data structures

must be handled similarly to the logical free list. A notable exception is

data structures used to implement �ne-granularity types. They are always

initialized to be empty when creating a snapshot, since they only contain

uncommitted changes which are not included in a snapshot.

11.5 Permanent Snapshots and Versions

There are two basic approaches to make several snapshots or versions per-

manent in the database. In the �rst approach each snapshot or version is an

independent database, and a single transaction can modify only one version

without resorting to distributed transaction processing algorithms. Each

version has its own page table pointer and transactions can be committed

independently to each version. A master pointer is used to contain the ad-

dresses of the page table pointers; both the master pointer and the page table

pointers are in stable storage. This �le structure is illustrated in Figure 11.5.

If there are very many permanent snapshots, the master pointer may have

extension pages which are stored in normal shadowed storage. Creation and

deletion of versions are atomic operations which are asynchronous with re-

spect to transaction processing. The rest of this section primarily considers

this approach.

In the second approach the versions are more like objects in a database,

and it is possible to access multiple versions in a single transaction (this

corresponds to the de�nition of the database version concept in [14]). There

is only one atomically updatable page table pointer, but it may contain

several page table addresses. Creation and deletion of versions are normal

operations that are done inside transactions. (It is also possible to use a

combination of these two approaches: there can be a master pointer which

points to a number of page table pointers, each of which contains one or

more page table addresses.)

102 CHAPTER 11. SNAPSHOTS

Data Pages

Page Table

Pointer

Page Table

Pointer

Page Table Pages

Master

Pointer

Figure 11.5: File structure with a master pointer and multiple versions.

All snapshots are initially temporary. They become permanent when a

permanent reference is created, usually by giving the snapshot a name. Using

the �rst approach, all of its pages must be forced to disk (if the snapshot has

been modi�ed after it was taken, some of the modi�cations may not be on

disk since no
ushing is needed when executing transactions to a temporary

snapshot), and a page table pointer is allocated for the snapshot. When all

pages and the page table pointer have been
ushed to disk, the address of

the page table pointer is atomically inserted to the master pointer. With

the second approach, a reference is created when the address of the page

table is stored to the page table as part of commit processing, and there is

no separate page table pointer.

It is important to guarantee that the hierarchical relationships of per-

manent snapshots is retained over crashes. In particular, if two permanent

snapshots have a common ancestor, that ancestor must implicitly be perma-

nent.

It is possible that a snapshot is on the path between two snapshots which

must be permanent, there is an application reference to the snapshot, but

the snapshot itself need not be permanent. Such snapshots should no longer

exist after recovery. This can be implemented either by checking for such

snapshots at recovery time or by storing only the truly permanent hierarchy

11.6. APPLICATIONS 103

on disk. The former alternative requires a little extra recovery code; the

latter alternative requires maintaining two overlapping snapshot hierarchies

(the temporary hierharchy in main memory and the permanent hierarchy on

disk). Both alternatives are feasible.

To make a permanent snapshot temporary, the pointer to the page table

pointer must be removed from the master pointer (or the page table pointer if

using the second approach). After that, the snapshot is no longer permanent.

In many cases the snapshot is freed immediately after making it temporary

(only temporary snapshots can be freed). The system must ensure that

snapshots which are required to maintain the permanent snapshot hierarchy

(forking points) are not made temporary, but this need not be visible to

application programs.

11.6 Applications

11.6.1 Read-Only Transactions

Any read-only transaction can be implemented by taking a snapshot of the

entire database, reading from the snapshot, and releasing the snapshot at

the end of the transaction. No locking or any interaction with other execut-

ing transactions is needed, yet the read-only transaction sees a consistent

database state. The read-only transaction is e�ectively serialized to the

moment when the snapshot was taken. (This is one way of implementing

multi-version concurrency control [11, 12]; read-only transactions in that

context have been discussed e.g. in [2].)

This solves the problems of large or long-duration read-only transac-

tions that are di�cult to solve in conventional log-based databases. Since

the transaction reads from a snapshot, no synchronization is needed with

other transactions and thus there will be no con
icts with update transac-

tions. Transient versioning [71] can used for the same purpose in log-based

databases.

11.6.2 On-The-Fly Multi-Level Incremental Dumping

One use of snapshots is to implement dumping of the database while transac-

tion processing is active. The backup process can be seen as a large read-only

transaction, and can be implemented by taking a snapshot at the start of

the dump, reading the logical database using the snapshot, and dropping

104 CHAPTER 11. SNAPSHOTS

the snapshot at the end of the dump. Only the logical database is dumped;

unused free pages or page table pages are not dumped.

Incremental dumping (that is, dumping of the changes made after the

previous dump) can be implemented using timestamps in page table entries

(cf. Section 11.3.2). The timestamp of the snapshot is recorded whenever

a dump is taken. When taking an incremental dump, the timestamps of

all page table entries are compared against the timestamp of the previous

dump, and only pages modi�ed after the previous dump are dumped. Pages

which have a null page number in their page table entry have been deleted;

those pages are naturally not dumped but instead the fact that the page has

been freed since the previous dump is recorded.

Multi-level incremental dumping allows several levels of dumps, e.g., a

monthly, weekly, and a daily dump. The idea is to dump the changes made

since the last higher-level dump. This can be implemented by recording the

timestamp of the last dump of each level, and dumping only pages that have

been modi�ed after the desired timestamp.

Since the dump only reads the page table (which is usually in main

memory) and the pages which are actually dumped, incremental dumping

is very e�cient. It is also possible to read directly from the disk while

taking a dump, bypassing the normal disk cache. This may be desirable to

avoid overhead and contention of the cache [69]. Since the physical pages

referenced from the snapshot do not change, reading directly from the disk

is trivial and does not change the algorithms in any way.

Many algorithms have been presented for on-the-
y dumping of log-based

databases [36, 44, 69, 84, 91, 94]. Most of the algorithms are based on taking

a fuzzy dump of the database and dumping the log records of transactions

which were active during the dump. [84] describes an algorithm which can be

used to directly take a consistent dump using locking (and correspondingly,

possibly causing some transactions to be aborted; it should also be noted

that [84] uses the term \incremental" in a di�erent sense).

Some of the earlier algorithms can support incremental dumping by hav-

ing a bit in the data pages which is set whenever the page is modi�ed [36].

In [69] the bit was stored in the space map pages of the database. Both of

these methods can be extended to incremental dumping by storing as many

bits as there are dump levels. Log sequence numbers (LSNs) can be used in

a similar way to do incremental dumping. Most of the algorithms require

scanning the entire database even for incremental dumping. The algorithms

in [69] are use bits in the free map pages to determine which pages need to

be dumped, and thus do not require a full scan.

11.7. MODIFIABLE SNAPSHOTS 105

11.7 Modi�able Snapshots

Multiple permanent versions could be useful in a number of applications. Ex-

amples include large design databases, where several design directions could

be considered simultaneously. Another application could be asking \what

if" questions in a large database without a�ecting the original database.

In large knowledge bases, multiple versions could be used to implement

new search algorithms. In certain fault-tolerant computing environments

it might be possible to see both the �le system and the state of the program

as a shadow paging database. The possibilities for interesting applications

are numerous and largely unexplored. It has not been possible to support

multiple independently updatable database versions e�ciently with existing

databases.

106 CHAPTER 11. SNAPSHOTS

Chapter 12

Write Optimizations

In most log-based database systems, the mapping between logical and phys-

ical pages is �xed. A �xed mapping has the advantage that maintaining

a page table is not required, and it allows e�cient clustering of related

logical pages. On the other hand, in systems with a �xed mapping, each

modi�ed data page must eventually be written back to its original location.

Since modi�cations are usually scattered throughout the entire database,

each modi�cation will typically require a seek to the desired location on

disk. This need is not removed by delaying or batching writes (except in hot

spots), since the database is usually very large compared to the number of

pages modi�ed, and thus the density of writes is still low.

Shadow paging allows the database system to choose where to write a

modi�ed page. The system can choose to write all modi�ed pages in a

contiguous area on disk, or just near each other. This allows many pages

to be written with a single seek. Alternatively, the system can use a \write

anywhere" strategy.

1

A similar idea is used in log-based �le systems [79, 90, 95], where long

writes are used to improve write performance.

12.1 Potential Speedup from Sequential Writes

A typical low-cost disk currently has about 15 ms average access time (t

a

)

and 4 MB/s sustained data transfer rate (R). The time required to transfer

1

\Write anywhere" is a strategy supported by some I/O subsystems. The idea is that

the I/O subsystem is given a block, it will write it anywhere on the disk, and return the

address of the block.

107

108 CHAPTER 12. WRITE OPTIMIZATIONS

S 512 1024 2048 4096 8192

F

1

124 62 32 16 9

Table 12.1: Limit of potential speedup F as N !1 for di�erent page sizes

S.

a page of data t

x

=

S

R

, where S is the size of the page in bytes. If a seek

is required, the time to read or write S bytes is t

a

+

S

R

. If many adjacent

pages are read or written, no physical seek is needed except for the �rst page.

Similarly, if one page is read or written, the next is skipped, and the next

written, no seek is needed for the latter page, but extra transfer (rotational

latency) time must be counted for the skipped page.

2

When a seek is required for each page, the time required to transfer N

pages of size S is N(t

a

+

S

R

). When a seek is required for the �rst page only,

the time is t

a

+N

S

R

. The maximum speedup factor F that can be achieved

by doing the writes sequentially is

F =

N(t

a

+

S

R

)

t

a

+N

S

R

: (12:1)

As N !1, the limit on speedup

F

1

= lim

N!1

F = 1 + t

a

R

S

: (12:2)

Figure 12.1 shows the speedup factor F for various page sizes and write

lengths for a typical low-cost disk (t

a

= 15ms and R = 4MB=s). Table 12.1

shows the limit of potential speedup when N !1.

The maximum speedup can be achieved if a su�ciently large contiguous

area can be found in the database. This is often not the case in practice,

and the part of the database with the highest density of free pages should

be used for writing. The pages which are be skipped between writes must

be counted in the transfer time. This can be represented by a skip factor s,

2

There are practical problems in writing to nearby sectors e�ciently. In theory this

should be very e�cient with track-bu�ered disk drives. The SCSI Write Cache feature

provides everything that is needed. The trouble is that most SCSI disks either do not

support Write Cache at all, or support it only enough that sales literature can claim that

it is supported (e.g., IBM 0662 drives are able to cache one write only, which renders the

write cache completely unusable).

12.2. MAKING WRITES SEQUENTIAL 109

1

24

816

326412
825

651
2

10
24

∞

Pages written

512

2048

8192

Pa
ge

 s
iz

e

1

10

100

1000
Sp

ee
du

p

Figure 12.1: Speedup factor F for di�erent page sizes S and transfer lengths

N .

which is the amount by which the transfer time must be multiplied. If the

area is contiguous, the skip factor is 1. If 25 percent of disk space is free and

it is evenly distributed (the worst case), s = 4. Even now, the maximum

speedup would be by a factor of 31 for 512 byte pages and by a factor of 4

for 4096 byte pages.

12.2 Making Writes Sequential

The idea in shadow paging is to allocate a new physical page whenever a

page is modi�ed. The new page number is kept in the incremental page

table until the transaction is committed.

Allocation of physical page numbers can be delayed by introducing the

concept of virtual page numbers (note that these have nothing to do with log-

ical page numbers). A virtual page number is an identi�er for a page known

by the transaction and the cache manager. The transaction may access a

page using the virtual page number, and the cache will return the appropri-

ate page. Virtual pages do not usually have a physical page associated with

them; they only exist in the cache.

A virtual page number is allocated whenever a page is �rst modi�ed.

Typically this is done by specifying an existing page number to the cache

manager. The cache manager will then allocate a unique virtual page num-

110 CHAPTER 12. WRITE OPTIMIZATIONS

ber and rename the page in its memory to use the virtual number. The

old physical page is e�ectively removed from the cache. Unless snapshots

(Section 11) are used, no-one will ever access the old page except in the case

that the current transaction is aborted.

Virtual page numbers cannot be stored in the page table, as they are only

temporary identi�ers in volatile storage. Before a transaction can commit,

actual physical pages must be allocated for its virtual pages (this is called

the realization of the virtual pages). Since many transactions are usually

committed as a batch, a large number of modi�cations can be combined,

and all virtual pages of the committing transactions can be realized at the

same time. The system can now allocate contiguous disk pages and write

them sequentially.

Modi�cation of page table pages is also done using virtual pages. When a

commit batch is being processed, virtual pages are created for all page table

pages that are going to be modi�ed. The virtual page table pages are then

realized together with modi�ed data pages, and the actual physical page

numbers are stored in the page table pages. Finally, both modi�ed data and

page table pages are
ushed to disk, and when they have all been written,

the page table pointer is updated atomically to point to the new page table.

It is possible to allocate the new physical pages on multiple disks and use

striping.

3

The cache is allowed to allocate physical pages for virtual pages even

before realization. This is desirable if there are large update transactions

which create very many virtual pages. In such cases the cache can make

long enough writes to achieve most of the maximum speedup. Transactions

will still access those pages using the virtual page number, and the new

physical page numbers will be internal to the cache until the virtual pages

are realized (for such pages, no pages are allocated during realization as they

already have a physical page). The virtual page number can be released after

the transaction holding the number has terminated.

When mirroring is used for media recovery (Section 14.1), two physical

pages are allocated for each virtual page. The physical pages are required

to be on two separate disks (on disks with independent failure modes). It is

possible to allocate two contiguous regions, one on each disk, or to use more

disks, whichever is more convenient.

It should be noted that this optimization makes conventional clustering

3

Striping that a large write is done using multiple disks in parallel. Each disk will write

only a small portion of the data. I/O bandwidth is multiplied by the number of disks.

12.3. DISK SPACE FRAGMENTATION 111

between logical pages impossible, as no attempt is made to keep the logical-

to-physical mapping linear. An alternate approach to clustering is presented

in Section 13.

12.3 Disk Space Fragmentation

In order to be able to do sequential writes, the system needs to �nd fairly

large contiguous regions. Contiguous regions are also important for large

pages when multiple page sizes are used. Pages, on the other hand, are freed

in fairly random order. Without countermeasures, this quickly leads into

severe free space fragmentation, and it becomes impossible to �nd contiguous

free areas.

There are several possible approaches to prevent fragmentation.

� The allocator can try to avoid using large free regions; it can instead

try to �ll the smaller slots �rst.

� It is possible to divide the disk space into smaller segments, always

write sequentially to an empty segment, and aggressively free frag-

mented segments by copying their data to the output. This is very

similar to what is done in log-structured �le systems [79, 90].

� One can reserve di�erent parts of the disk for di�erent page sizes. This

helps in �nding space for the larger pages.

Dealing with fragmentation is still under research, and new ideas are

being investigated.

112 CHAPTER 12. WRITE OPTIMIZATIONS

Chapter 13

Clustering

The write optimizations in Section 12 prevent conventional clustering of re-

lated logical pages. Because it is desirable to be able to write a page to a new

location without constraints, earlier clustering algorithms for shadow pag-

ing which attempted to keep the logical-to-physical mapping approximately

linear [43, 60, 88] are not applicable.

There are three important applications of clustering:

� Sequential scans

� Reading/writing large objects

� Certain types of joins

13.1 Sequential Scans and Large Objects

Clustering problems are at worst when reading large multi-megabyte objects

or scanning a large table. The time required to read an object (or table) of

S bytes in N

parts

parts is

t(S;N

parts

) = d

S

N

psz

et

x

+N

parts

t

a

:

It is assumed that in systems with a �xed mapping the object can always

be stored as a contiguous region (N

parts

= 1), although this optimal case is

not always possible in practice due to free space fragmentation. It is also

assumed that each page of the object in a shadow paging system is stored

in a separate location (N

parts

= d

S

N

psz

e), which is the worst case.

113

114 CHAPTER 13. CLUSTERING

1k
10k

100k
1M

10M

Object size

512

1024
2048

4096

8192

16384

32768

65536
Pa

ge
 s

iz
e

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

C
os

t f
ac

to
r

Figure 13.1: Worst-case fragmentation cost factor C for di�erent page sizes

N

psz

and object sizes S.

The worst-case fragmentation cost factor C can be de�ned as

C =

t(S; d

S

N

psz

e)

t(S; 1)

: (13:1)

This expresses the worst-case overhead due to fragmentation, with the value

1 meaning no overhead, value 2 meaning that I/O time is doubled, etc.

Values for the fragmentation cost factor are shown in Figure 13.1. In practice

the cost factors are smaller, partly because it becomes impossible due to free

space fragmentation to �nd su�ciently large contiguous free areas to store

the object in one piece, partly because there might be locality in a shadow

paging system due to correlation of update times, and partly because it is

often more e�cient to store a large object divided on several disks instead

of just one contiguous region on one disk.

It can be seen that fragmentation can be helped by increasing the page

size. On the other hand, as seen from Table 12.1, the write optimizations

become less e�ective when the page size increases. Also, since the entire

page needs to be written to a new location if any part of it changes, transfer

time increases with page size.

13.2. JOINS 115

The solution is to use variable-size pages (multiples of the basic block

size). The size of each logical page can be stored in the page table where it is

easily accessible whenever needed. The basic block size should be chosen as

small as possible to make small updates as fast as possible where clustering

is not needed, and larger pages should be used for storing large objects or

tables which are often accessed sequentially. Variable-size pages allow tuning

the sequential read versus small update performance tradeo� on a per-object

basis to best suit the needs of each application.

Page size is optimal when the average cost of an access is minimal. To

express this formally, let p

r

(S) be the probability that a particular access is

a read of size S and p

w

(S) be the probability that the access is a write of

size S. The probability that the access is a read is p

r

=

P

1

S=0

p

r

(S), and the

probability that it is a write is p

w

=

P

1

S=0

p

w

(S). By de�nition, p

r

+p

w

= 1.

The cost of a read in terms of I/O time is

c

r

(S;N

psz

) = d

S

N

psz

e(t

a

+

N

psz

R

):

Writes are cheaper due to batching of writes. The cost of a write (ignoring

the initial seek as it is divided between many writes) is

c

w

(S;N

psz

) = d

S

N

psz

es

N

psz

R

:

The average cost of an arbitrary I/O operation is

c

io

(N

psz

) =

1

X

S=0

p

r

(S)c

r

(S;N

psz

) +

1

X

S=0

p

w

(S)c

w

(S;N

psz

): (13.2)

The optimal value for the page size is the value at which c

io

(N

psz

) is mini-

mum.

13.2 Joins

It is fairly common to store two or more tables using the same clustering

index. This permits the tables to be joined very e�ciently on the attribute

on which they are clustered.

116 CHAPTER 13. CLUSTERING

Due to the dynamic nature of most index structures, such as a B-tree, leaf

nodes which contain adjacent key values cannot easily be stored in nearby

locations on disk. The B-tree nodes, on the other hand, might consist of

several physical blocks.

Shadow paging permits using a clustering index the same way as log-

based databases. Each B-tree node is a page. Data from several tables will

be clustered within each page. Di�erent index pages will not be clustered

with respect to each other. The situation is essentially identical to that in

log-based databases.

Chapter 14

Media Recovery

Log-based database systems can use a dump plus log entries to reconstruct

the database state before crash [33]. However, since shadow paging does not

have a log, this option cannot be used for media recovery.

14.1 Mirroring

Mirroring [33, 78] is a technique where the same data is stored on two disks,

and if one disk fails the other can still be used. Mirroring also has the

advantage that reads can use either copy of the data, reducing read latency.

However, writes must be made to both copies of the data, increasing write

latency. Additionally, disk space requirements are doubled. Doubly distorted

mirrors [78] are an optimization which reduces the cost of writes.

Mirroring works very nicely with shadow paging. All references to phys-

ical pages are made to contain two page numbers. When a physical page is

allocated, two pages on di�erent disks are allocated. Both pages are written

and contain the same data. When read, either page can be read. Two page

numbers are stored in page table entries, higher-level page table entries, in

the page table pointer, and everywhere else where a physical page number

is stored. The page table pointer is stored on two disks.

Mirroring is used together with the write optimizations of Section 12.

While the transaction is active, it refers to the page using a virtual page

number. When it commits, it realizes its virtual pages. The system then

allocates two physical pages on di�erent disks for each virtual page. The

result is typically two nearly contiguous regions on two disks. It is not �xed

which pairs of disks contain each others data { it is su�cient to pick any

117

118 CHAPTER 14. MEDIA RECOVERY

two disks with enough free space (things such as the average load or the

current position of the read/write head can be used for selecting the two

disks). The two nearly contiguous regions are then written. (Alternatively,

a write anywhere strategy could be used for each individual page.)

Mirroring with shadow paging gets all the bene�ts of doubly distorted

mirrors and is simple to implement. It works very nicely with the write

optimizations. It is
exible, and does not require disks of the same size. It

is even possible to do recovery after a disk crash without a spare part: the

page copies that were on the damaged disk are relocated to other disks in

the system. The only constraint is that the two copies of the page cannot

be on the same disk or on disks with common failure modes.

The implentation of mirroring is simpli�ed by the fact that any data that

is being written is not part of the permanent database. Should the system

fail in the middle of a write, it does not matter if just one of the copies

got written since the page is not part of the database anyway. Without

shadowing, however, the system must deal with situations where the two

copies of a mirrored page contain inconsistent data.

14.2 Recovery Procedures

Recovery from a single bad block can be done by reading the data from the

other copy of the page, and virtualizing the page. The page will be realized

and its new address updated to the page table as part of the next commit

batch. Note that it is su�cient to virtualize the failed side of the page;

the other copy need not be moved. However, supporting this may not be

worthwhile.

If permanent snapshots are supported, the page must be updated syn-

chronously in all snapshots referring to it. The snapshots should still share

the page after it has been moved.

Recovery from a disk crash can be done by traversing the page table, and

processing each page which has a copy on the failed disk as was described

above for a single page.

The exact details of recovery (e.g., how to recover the page in the presence

of snapshots, and how to continue normal operation during recovery) are still

under research.

14.3. RAID 119

14.3 RAID

Conventional RAID [37, 80, 99, 100] does not work well with shadow pag-

ing. The problem is that all pages are written to newly allocated locations.

This means that to update the parity block, the old value of the data page

must probably be read from the disk so that it can be removed from the

parity block. Alternatively all the pages using that parity block would have

to be available. All visible implementation strategies lead to unacceptable

overheads.

It is possible to use a novel completely dynamic RAID algorithm re-

sembling the mirroring algorithm above. Tero Kivinen is writing about the

RAID implementation [in preparation].

120 CHAPTER 14. MEDIA RECOVERY

Chapter 15

Two-Phase Commit

Lampson and Sturgis [48, 49] have presented a method for doing two-phase

commit with shadow paging using the intentions list paradigm. The method

presented here resembles their method, but is more general.

Two-phase commit is a common method for implementing transactions

in distributed databases. Two-phase commit requires that the changes made

by a transaction can be saved so that they survive a possible crash but can

still be undone.

The basic idea is to store the incremental page table on disk in the

�rst phase of commit, and leave a pointer to the incremental page table in

the page table pointer. If a crash occurs, the incremental page table can be

recovered from the copy on disk and the coordinator queried about the fate of

the transaction. In the second phase of commit, the transaction is committed

normally and the incremental page table on disk is freed (atomically, in the

same commit batch).

Fine-granularity locking requires special consideration with two-phase

commit. It must be possible to store on disk the �ne-granularity locking state

of the transaction. This is implemented by having each �ne-granularity type

implement a method which generates a linear (byte array) representation

of the �ne-granularity changes of that type made by the transaction. The

representation must be su�cient that the �ne-granularity modi�cations and

locks held by the transaction can be restored using the representation. The

Transaction class provides a method which returns the combined state of

all �ne-granularity types used by the transaction. It also has a method

which can be used to restore the state of the transaction from the linear

representation; it splits the representation into parts supported by each �ne-

121

122 CHAPTER 15. TWO-PHASE COMMIT

granularity type and passes the parts on to individual �ne-granularity types.

15.1 First Phase of Commit

When a node is requested to do the �rst phase of commit, all shared locks

are released immediately. The incremental page table of the transaction,

the linearized �ne-granularity changes, and any modi�ed pages are written to

disk. The saved information must be su�cient to reconstruct the state of the

transaction after a crash, and to identify the coordinator of the transaction

and the transaction within the coordinator. During processing of the next

commit batch, a pointer to the saved information on disk will be added

to the page table pointer (if there are very many transactions doing two-

phase commit, it may be necessary to use extension pages to store all the

pointers). When the page table pointer has been stored on disk, the system

reports \ready" to the coordinator.

15.2 Second Phase

The second phase is executed like any transaction commit. The pointer to

the saved information is removed from the page table pointer during the

commit and the disk space is freed.

If the coordinator decides to abort the transaction, the pointer to the

saved information is removed from the page table pointer during the next

commit batch and the disk space is freed. Otherwise the abort is done

normally.

15.3 Crash Recovery

During crash recovery, the system must read the saved information of par-

tially processed global transactions from disk. The pages mentioned in saved

incremental page tables must be counted as used when extracting the free

list from the page table. The state of global transactions is restored from

the saved information (including the incremental page table, �ne-granularity

modi�cations, and exclusive locks). Normal transaction processing can be-

gin when the exclusive locks held by recovered global transactions have been

restored. The system then queries the coordinator of each global transaction

about the fate of the transaction.

15.3. CRASH RECOVERY 123

The coordinator of a global transaction must keep enough information

to answer queries about the fate of the transaction, e.g. by keeping a list

of global transactions that have been partially (phase one) committed but

that have not yet been reported fully committed by all other machines. The

list of active global transactions can be kept in the page table pointer, with

extension additional pages if necessary.

124 CHAPTER 15. TWO-PHASE COMMIT

Chapter 16

Miscellaneous Optimizations

16.1 Page Table Translation Lookaside Bu�er

Translating a page number through the page table costs several hundred

instructions assuming a bu�er cache lookup can be done in about a hundred

instructions. The total overhead for a TPC-B

1

style transaction can be

several thousand instructions.

The translation cost can be reduced dramatically by using a specialized

data structure to cache recently used mappings. One possibility is to use an

array of mappings hL;P i as a hash table (L is a logical page number and

P is the corresponding physical page number). The logical page number is

hashed into the table using the lower bits of the page number (if the size

of the array is a power of two, this can be done with a single bitwise-and

instruction). When a translation from a logical to a physical page number

is needed, the appropriate slot of the table is checked �rst, and if present,

the mapping there is used. Otherwise the translation is done using the page

table, and the mapping is copied to the hash table. Page table modi�cations

also update mappings in the hash table.

This optimization almost eliminates the translation cost for most ac-

cesses. Higher hit rates for the lookaside bu�er can be achieved by using an

N-way set-associative architecture [96].

1

TPC-B [31] is a benchmark de�ned by the Transaction Processing Council. It simu-

lates a large bank and uses small Debet/Credit type transactions.

125

126 CHAPTER 16. MISCELLANEOUS OPTIMIZATIONS

16.2 Storing Write Hotspots in the Page Table

Pointer

Many databases contain small write-intensive hotspots, such as counters

for unique identi�ers. It is possible to avoid frequent writes of the data

pages containing those hotspots by relocating the hotspots to the page table

pointer. The page table pointer is written anyway during every commit

batch, and any data stored there gets written to disk for free. The available

space is limited, but the savings can be considerable in certain types of

applications.

Hotspots can be detected automatically. For example, the cache can

collect statistics on which pages are modi�ed very frequently. When a fre-

quently modi�ed page has been identi�ed, more detailed statistics are col-

lected on higher levels to identify the hotspot object(s) on the page.

Relocation to the page table pointer can be implemented by storing the

identi�ers of objects stored there in a hash table, and whenever an object

is accessed, �rst checking from the hash table if that object is stored in the

page table pointer instead of the location indicated by the object identi�er.

Part III

Conclusion

127

Chapter 17

Conclusion and Further

Research

Solutions have been presented to all the major problems with shadow paging

that have been mentioned in the literature. With these extensions, shadow

paging seems to satisfy all the requirements for an industrial-strength data-

base system.

It is clear that shadow paging has many desirable properties. Recovery is

simple, transaction rollback is fast, the write optimizations contribute to rea-

sonable performance, mirroring performs extremely well, no logs are needed

which simpli�es both the implementation and administration, and snapshots

allow read-only transactions to be run without interference with other trans-

actions and allow e�cient on-the-
y multi-level incremental dumping.

However, there are still many open questions.

� The force policy is used for bu�er management. That is, all pages mod-

i�ed by a transaction must be written to disk before the transaction

can commit. It is not clear how much this really a�ects throughput.

Even in log-based systems each modi�ed page must eventually be writ-

ten to disk, and since the density of writes is typically low compared to

the size of the database, the total I/O may not be a�ected very much

by the force policy, except in hot-spots. The write optimizations may

o�set the extra writes. Jim Gray has suggested using battery-backed-

up memory [personal communication], but the issue has not yet been

looked into.

� The time needed to commit a transaction is longer than in log-based

129

130 CHAPTER 17. CONCLUSION AND FURTHER RESEARCH

databases. The reason is that more data needs to be written to disk

(force policy, page table writes, and page table pointer writes). Waiting

for the next commit batch also causes a short delay. The di�erence

may be some tenths of a second.

� Update transactions of greatly varying sizes may intolerably slow down

commit batches. In general, processing of very large transactions is

somewhat awkward and may sometimes require locking of the entire

table or index. These are probably not serious problems in most en-

vironments, but there are situations where the current solutions may

not work very well.

� The implementation of �ne-granularity transactions somewhat compli-

cates normal transaction processing because changes need to be kept

separately. This also causes some overhead (although in main mem-

ory databases \shadow updating" [55] has been reported to perform

quite well). Preliminary benchmarks using B-trees and TPC-B type

transactions suggest that the overhead is not signi�cant.

� Even though solutions have been presented for clustering, there are

some types of applications (a mixture of random updates and frequent

sequential reads) where the performance may not be very good.

� Media recovery is quite di�erent from log-based systems since there is

no log which could be used for media recovery. Mirroring works very

nicely with shadow paging (it is possible to get all the bene�ts of dou-

bly distorted mirrors [78] using normal disk controllers and with less

overhead). RAID is quite di�erent from conventional RAID subsys-

tems, but can be implemented e�ciently.

� Two-phase commit requires one commit batch to do phase one and

another to do phase two. The overhead is not very high, but may still

be too much in some applications. The severity of the problem is not

yet known.

� The write optimizations rely on �nding su�ciently large contigous re-

gions of free space. However, pages are freed in random order. This

leads to fragmentation of disk space unless special countermeasures are

taken. One approach is to use suitable heuristics in the allocator; an-

other is to move pages to combine small free regions into larger regions.

131

Fragmentation is not a very serious problem if the disk drives used sup-

port track bu�ering; however, eliminating it becomes very important

when skipping over a few sectors is expensive. Disk space allocation is

still under research.

� The log is sometimes used for other purposes besides recovery (e.g.,

auditing). If needed, it is possible to maintain a log for auditing pur-

poses in normal shadowed storage. No special recovery mechanisms

will be needed for the log. Also, writes to the log will be included

in the sequential write generated by the write optimizations, and the

performance overhead should be very small.

All of these issues are still more or less open. Better solutions are likely

to be found for many of them. The �nal question, whether the good aspects

of shadow paging (e.g. write optimizations, snapshots) o�set the problems,

is still open and probably will not be answered until the ideas have been

fully tried out in practice.

There are some important questions that have not been addressed in this

thesis. These include nested transactions, partial rollbacks, and maintain-

ing a remote hot standby. Also, concrete performance results are not yet

available. These issues will be addressed in future research.

The ideas presented in this thesis are being implemented in the Shadows

database system prototype being built at Helsinki University of Technology,

Finland. It is too early to do real performance evaluations; however, prelim-

inary results have been promising.

132 CHAPTER 17. CONCLUSION AND FURTHER RESEARCH

Bibliography

[1] M. E. Adiba and B. G. Lindsay. Database snapshots. In Very Large

Data Bases, pages 86{91, 1980.

[2] D. Agrawal and S. Sengupta. Modular synchronization in multiver-

sion databases: Version control and concurrency control. In ACM

SIGMOD, pages 408{417, 1989.

[3] R. Agrawal and M. J. Carey. The performance of concurrency con-

trol and recovery algorithms for transaction-oriented database systems.

IEEE Database Engineering, 4:118{127, 1985.

[4] R. Agrawal and D. J. DeWitt. Integrated concurrency control and re-

covery mechanisms: Design and performance evaluation. ACM Trans-

actions on Database Systems, 10(4):529{564, 1985.

[5] Anon. et al. A measure of transaction processing power. Datamation,

31(7):112{118, 1985.

[6] R. A. Baeza-Yates. Expected behaviour of B

+

-trees under random

insertions. Acta Informatica, 26:439{471, 1989.

[7] N. S. Barghouti and G. E. Kaiser. Concurrency control in advanced

database applications. Computing Surveys, 23(3):269{317, 1991.

[8] R. Bayer. Symmetric binary B-trees: Data structure and maintenance

algorithms. Acta Informatica, 1:290{306, 1972.

[9] R. Bayer and E. McCreight. Organization and maintenance of large

ordered indexes. Acta Informatica, 1:173{189, 1972.

[10] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees.

Acta Informatica, 9:1{21, 1977.

133

134 BIBLIOGRAPHY

[11] P. A. Bernstein and N. Goodman. Multiversion concurrency control

{ theory and algorithms. ACM Transactions on Database Systems,

8(4):465{483, 1983.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, 1987.

[13] R. G. G. Cattell. Object Data Management: Object-Oriented and Ex-

tended Relational Database Systems. Addison-Wesley, 1991.

[14] W. Cellary and G. Jomier. Consistency of versions in object-oriented

databases. In F. Bancilhon, C. Delobel, and P. Kanellakis, editors,

Building an Object-Oriented Database System, pages 447{462. Morgan

Kaufmann, 1992.

[15] E. E. Chang and R. H. Katz. Exploiting inheritance and structure

semantics for e�ective clustering and bu�ering in an object-oriented

DBMS. In ACM SIGMOD, pages 348{357, 1989.

[16] J. R. Cheng and A. R. Hurson. E�ective clustering of complex objects

in object-oriented darabases. In ACM SIGMOD, pages 22{31, 1991.

[17] Y. Choueka, A. S. Fraenkel, and S. T. Klein. Compression of concor-

dances in full-text retrieval systems. In ACM SIGIR, pages 597{613,

1988.

[18] D. Comer. The ubiquitous B-tree. Computing Surveys, 11(2):121{137,

1979.

[19] D. Cutting and J. Pedersen. Optimizations for dynamic inverted index

maintenance. In ACM SIGIR, pages 405{411, 1990.

[20] C. T. Davies. Data processing spheres of control. IBM Systems Jour-

nal, 17(2):179{198, 1978.

[21] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,

and D. Wood. Implementation techniques for main memory database

systems. In ACM SIGMOD, pages 1{8, 1984.

[22] M. H. Eich. Main memory database recovery. In Fall Join Computer

Conference, pages 1226{1232, 1986.

[23] M. H. Eich. A classi�cation and comparison of main memory database

recovery techniques. In Data Engineering, pages 332{339, 1987.

BIBLIOGRAPHY 135

[24] T. Eiter, M. Schre�, and M. Stumptner. Sperrverfahren f�ur B-b�aume

im vergleich. Informatik Spektrum, 14:183{200, 1991.

[25] C. S. Ellis. Concurrent search and insertion in 2-3 trees. Acta Infor-

matica, 14:63{86, 1980.

[26] C. S. Ellis. Concurrent search and insertion in avl trees. IEEE Trans-

actions on Computers, 29:811{817, 1980.

[27] J. L. Eppinger, L. B. Mummert, and A. Z. Spector. Camelot and

Avalon: A Distributed Transaction Facility. Morgan Kaufmann, 1991.

[28] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Treiger. The notions of

consistency and predicate locks in a database system. Communications

of the ACM, 19(11):624{6633, 1976.

[29] H. Garcia-Molina and K. Salem. Sagas. In ACM SIGMOD, pages

249{259, 1987.

[30] J. Gray, 1993. Personal communication.

[31] J. Gray. The Benchmark Handbook. Morgan Kaufmann, second edi-

tion, 1993.

[32] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,

F. Putzolu, and I. Traiger. The recovery manager of the System R

database manager. Computing Surveys, 13(2):223{243, 1981.

[33] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[34] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced

trees. In IEEE Symposium on Foundations of Computer Science, pages

8{21, 1978.

[35] T. Haerder and A. Reuter. Principles of transaction-oriented database

recovery. Computing Surveys, 15(4):287{317, 1983.

[36] R. B. Hagmann. A crash recovery scheme for a memory-resident

database system. IEEE Transactions on Computers, C-35(9):839{843,

1986.

[37] R. Y. Hou and Y. N. Patt. Comparing rebuild algorithms for mirrored

and RAID5 disk arrays. In ACM SIGMOD, pages 317{326, 1993.

136 BIBLIOGRAPHY

[38] ISO and ANSI SQL3 Working Draft { February 5, 1993.

[39] T. Johnson and D. Shasha. Utilization of B-trees with inserts, deletes

and modi�es. In ACM PODS, pages 235{246, 1989.

[40] B. K�ahler and O. Risnes. Extending logging for database snapshot

refresh. In Very Large Data Bases, pages 389{398, 1987.

[41] A. M. Keller and G. Wiederhold. Concurrent use of B-trees with

variable-lenght entries. ACM SIGMOD Record, 17(2):89{90, 1988.

[42] J. Kent, H. Garcia-Molina, and J. Chung. An experimental evalution

of crash recovery mechanisms. In ACM PODS, pages 113{121, 1985.

[43] J. M. Kent. Performance and Implementation Issues in Database

Crash Recovery. PhD thesis, Princeton University, 1985.

[44] R. P. King, N. Halim, H. Garcia-Molina, and C. A. Polyzois. Manage-

ment of a remote backup copy for disaster recovery. ACM Transactions

on Database Systems, 16(2):338{368, 1991.

[45] D. Knuth. The Art of Computer Programming, volume 3, chapter 6.2.4

Multiway Trees, pages 471{479. Addison-Wesley, 1973.

[46] H. F. Korth and A. Silberschatz. Database System Concepts. McGraw-

Hill, 1986.

[47] H. T. Kung and P. L. Lehman. A concurrent database manipulation

problem: Binary search trees. ACM Transactions on Database Sys-

tems, 3:339{353, 1980.

[48] B. W. Lampson. Distributed Systems { Architecture and Implementa-

tion, chapter 11. Atomic Transactions, pages 246{265. Springer-Verlag,

1983.

[49] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data

storage system. Technical report, Xerox Palo Alto Research Center,

April 1979.

[50] S. D. Lang, J. R. Driscoll, and J. H. Jou. Batch insertion for tree

structured �le organizations { improving di�erential database repre-

sentation. Information Systems, 11(2):167{175, 1986.

BIBLIOGRAPHY 137

[51] V. Lanin and D. Shasha. A symmetric concurrent B-tree algorithm.

In Fall Joint Computer Conference, pages 380{389, 1986.

[52] P. L. Lehman and S. B. Yao. E�cient locking for concurrent operations

on B-trees. ACM Transactions on Database Systems, 6(4):650{670,

1981.

[53] F. E. Levine and C. Mohan. Method for concurrent record access,

insertion, deletion and alteration using an index tree. United States

Patent 4,914,569, IBM, April 1990.

[54] F. E. Levine and C. Mohan. Method and apparatus for concurrent

modi�cation of an index tree in a transaction processing system utiliz-

ing selective indication of structural modi�cation operations. United

States Patent 5,123,104, IBM, June 1992.

[55] X. Li and M. H. Eich. Post-crash log processing for fuzzy checkpointing

main memory databases. In Data Engineering, pages 117{124, 1993.

[56] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A snapshot

di�erential refresh algorithm. In ACM SIGMOD, pages 53{60, 1986.

[57] C.-C. Liu and T. Minoura. E�ect of update merging on reliable storage

performance. In Data Engineering, pages 208{213, 1986.

[58] D. Lomet and B. Salzberg. Access method concurrency with recovery.

In ACM SIGMOD, pages 351{360, 1992.

[59] D. B. Lomet. Key range locking strategies for improved concurrency.

In Very Large Data Bases, pages 655{664, 1993.

[60] R. A. Lorie. Physical integrity in a large segmented database. ACM

Transactions on Database Systems, 2(1):91{104, 1977.

[61] N. A. Lynch. Multilevel atomicity { a new correctness criterion for

database concurrency control. ACM Transactions on Database Sys-

tems, 8(4):484{502, 1983.

[62] U. Manber and R. E. Ladner. Concurrency control in a dynamic

search structure. ACM Transactions on Database Systems, 9(3):439{

455, 1984.

138 BIBLIOGRAPHY

[63] G. Matsliach. Performance analysis of �le organizations that use multi-

bucket data leaves with partial expansions. In ACM PODS, pages

164{180, 1991.

[64] D. A. Menas�ce and O. E. Landes. On the design of a reliable storage

component for distributed database management systems. In Very

Large Data Bases, pages 365{375, 1980.

[65] C. Mohan. ARIES/KVL: A key-value locking method for concurrency

control of multiaction transactions operating on B-tree indexes. In

Very Large Data Bases, pages 392{405, 1990.

[66] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

ARIES: A transaction recovery method supporting �ne-granularity

locking and partial rollbacks using write-ahead logging. ACM Trans-

actions on Database Systems, 17(1):94{162, 1992.

[67] C. Mohan and F. Levine. ARIES/IM: An e�cient and high concur-

rency index management methof using write-ahead logging. In ACM

SIGMOD, pages 371{380, 1992.

[68] C. Mohan and I. Narang. Algorithms for creating indexes for very

large tables without quiescing updates. Technical Report RJ 8016,

Data Base Technology Institute, IBM Almaden Reserch Center, March

1991.

[69] C. Mohan and I. Narang. An e�cient and
exible method for archiving

a data base. In ACM SIGMOD, pages 139{146, 1993.

[70] C. Mohan, R. Obermark, and K. Treiber. Concurrently applying redo

records to backup database in a log sequence using single queue server

per queue at a time. United States Patent 5,170,480, IBM, December

1992.

[71] C. Mohan, H. Pirahesh, and R. Lorie. E�cient and
exible meth-

ods for transient versioning of records to avoid locking by read-only

transactions. In ACM SIGMOD, pages 124{133, 1992.

[72] C. Mohan, K. Treiber, and R. Obermark. Algorithms for the man-

agement of remote backup data bases for disaster recovery. In Data

Engineering, pages 511{518, 1993.

BIBLIOGRAPHY 139

[73] Y. Mond and Y. Raz. Concurrency control in B

+

-trees databases using

preparatory operations. In Very Large Data Bases, pages 331{334,

1985.

[74] J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-

tributed Computing. PhD thesis, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, 1981. Available as

MIT/LCS/TR-260.

[75] M. H. Nodine and S. B. Zdonik. Cooperative transaction hierarchies:

A transaction model to support design applications. In Very Large

Data Bases, pages 83{94, 1990.

[76] O. Nurmi and E. Soisalon-Soininen. Uncoupling updating and rebal-

ancing in chromatic binary search trees. In ACM PODS, pages 192{

198, 1991.

[77] O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency control

in database structures with relaxed balance. In ACM PODS, pages

170{176, 1987.

[78] C. U. Orji and J. A. Solworth. Doubly distorted mirrors. In ACM

SIGMOD, pages 307{316, 1993.

[79] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: A case for

log-structured �le systems. ACM Operating Systems Review, 23(1):11{

28, 1989.

[80] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant

arrays of inexpensive disks (RAID). In ACM SIGMOD, pages 109{116,

1988.

[81] K. Pollari-Malmi, E. Soisalon-Soininen, and T. Yl�onen. Concurrent

group-update algorithms. Technical Report 1992/TKO-B87, Helsinki

University of Technology, Finland, 1992.

[82] K. Pollari-Malmi, E. Soisalon-Soininen, and T. Yl�onen. Batch up-

dates and concurrency in B-trees. Technical Report 1993/TKO-B106,

Helsinki University of Technology, Finland, 1993.

[83] C. A. Polyzois and H. Garcia-Molina. Evaluation of remote backup

algorithms for transaction processing systems. In ACM SIGMOD,

pages 246{255, 1992.

140 BIBLIOGRAPHY

[84] C. Pu. On-the-
y, incremental, consistent reading of entire databases.

In Very Large Data Bases, pages 369{375, 1985.

[85] W. Pugh. Concurrent maintenance of skip lists. Technical Report CS-

TR-2222.1, Institute for Advanced Computer Studies, Department of

Computer Science, University of Maryland, 1989. Revised June 1990.

[86] W. Pugh. A skip list cookbook. Technical Report UMIACS-TR-89-

72.1 (CS-TR-2286.1), Institute for Advanced Computer Studies, De-

partment of Computer Science, University of Maryland, 1989. Revised

June 1990.

[87] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.

Communications of the ACM, 33(6):668{676, 1990.

[88] A. Reuter. A fast transaction-oriented logging scheme for UNDO re-

covery. IEEE Transactions on Software Engineering, SE-6(4):348{356,

1980.

[89] A. Reuter. Performance analysis of recovery techniques. ACM Trans-

actions on Database Systems, 9(4):526{559, 1984.

[90] M. Rosenblum and J. K. Ousterhout. The design and implementa-

tion of a log-structured �le system. In ACM Symposium on Operating

Systems Principles, pages 1{15, 1991.

[91] D. J. Rosenkrantz. Dynamic database dumping. In ACM SIGMOD,

pages 3{8, 1978.

[92] K. Rothermel and C. Mohan. ARIES/NT: A recovery method based

on write-ahead logging for nested transactions. In Very Large Data

Bases, pages 337{346, 1989.

[93] Y. Sagiv. Concurrent operations on B

�

-trees with overtaking. Journal

of Computer and System Sciences, 33:275{296, 1986.

[94] K. Salem and H. Garcia-Molina. Checkpointing memory-resident

databases. In Data Engineering, pages 452{462, 1989.

[95] M. Seltzer and M. Stonebraker. Transaction support in read optimized

and write optimized �le systems. In Very Large Data Bases, pages

174{185, 1990.

BIBLIOGRAPHY 141

[96] A. J. Smith. Cache memories. Computing Surveys, 14(3):473{530,

1982.

[97] V. Srinivasan and M. J. Carey. Performance of B-tree concurrency

control algorithms. In ACM SIGMOD, pages 416{425, 1991.

[98] V. Srinivasan and M. J. Carey. Performance of on-line index construc-

tion algorithms. In EDBT, pages 293{309, 1992.

[99] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The design

of XPRS. In Very Large Data Bases, pages 318{330, 1988.

[100] M. Stonebraker and G. A. Schloss. Distributed RAID { a new multiple

copy algorithm. In Data Engineering, pages 430{437, 1990.

[101] R. F. van der Lans. The SQL Standard { A Complete Reference.

Academic Service and Prentice Hall, 1989.

[102] J. S. M. Verhofstad. Recovery techniques for database systems. Com-

puting Surveys, 10(2):167{195, 1978.

[103] T. Yl�onen. An algorithm for full-text indexing. Technical Report

1992/TKO-B75, Helsinki University of Technology, Finland, 1992.

[104] T. Yl�onen. An algorithm for full-text indexing. Master's thesis, Labo-

ratory of Information Processing Science, Helsinki University of Tech-

nology, Finland, 1992.

[105] T. Yl�onen. Concurrent shadow paging: A new direction for database

research. Technical Report 1992/TKO-B86, Helsinki University of

Technology, Finland, 1992.

[106] T. Yl�onen. Write optimizations and clustering in concurrent shadow

paging. Technical Report 1993/TKO-B99, Helsinki University of Tech-

nology, Finland, 1993.

[107] T. Yl�onen, T. Kivinen, H. Suonsivu, and T. M�annist�o. Concur-

rent shadow paging: Snapshots, read-only transactions, and on-the-
y

multi-level incremental dumping. Technical Report 1993/TKO-B104,

Helsinki University of Technology, Finland, 1993.

[108] T. Yl�onen, E. Soisalon-Soininen, and T. Kivinen. Concurrent shadow

paging: Fine-granularity locking with support for extended lock modes

142 BIBLIOGRAPHY

and early releasing of locks. Technical Report 1993/TKO-B112,

Helsinki University of Technology, 1993.

[109] T. Yl�onen and H. Suonsivu. A multi-user shadow paging transac-

tion manager on Mach 3.0. In J. Helander and H. Saikkonen, editors,

Distributed Operating Systems and Mach: Proceedings of the Spring

1992 Graduate Seminar on Distributed Systems. Helsinki University

of Technology, Finland, 1993. Available as report 1993/TKO-C61.

[110] B. Zhang and M. Hsu. Unsafe operations in B-trees. Acta Informatica,

26:421{438, 1989.

Index

Aborting transactions 35, 44, 58,

94

abort changes 66

abort changes callback 67

abort transaction 66, 67, 71

ACID 7, 33, 60

Active state of transaction 56

After-image logging 34

Agrawal and DeWitt 43

allocate logical page number 63

allocate page 67, 72

allocate physical copy of logical page

65

allocate physical copy of physical page

65

allocate physical page 65

Allocation of physical pages 109

Analysis of sequential writes 107

Applications of snapshots 103

Atomic recovery method 39

Atomicity 7, 33, 39, 57

Availability 10, 11

Avoiding cascading aborts 26

B-tree handle 84

B-tree locking 35, 77

B-tree operations 76

B-tree structure modi�cation 86

B-trees 66, 75, 86

Backups 35, 36, 103

Bad blocks 37

BaseTransaction 65, 66, 70

BaseTransactionDatabase 65, 66

Before images 36

Before-image logging 34

begin update 63

Blobs 40, 51, 113

Bohrbugs 13

Browse access 27

Bypassing disk cache 104

Cache 39, 61, 109

Caching page table mappings 125

Cascading aborts 26, 58, 60

Chained transactions 23

Change sets 95

Checking for references 94

Checkpoints 36, 39, 42, 93

Chronological chain of snapshots

94, 95, 97, 99

Clustering 39, 45, 46, 110, 113, 130

Coarse granularity locking 30

Coarse-granularity locking 82

Combining transactions 57

Commit batching 44, 52, 57, 96,

129

Commit log record 36

Commit processing 39, 57, 71

Commit thread 71

Commit 35, 44, 50, 52, 56, 58, 94,

129

commit transaction 66, 67, 70

commit update 64, 71

Commutative operations 55, 61

143

144 INDEX

Commutative updates 30

Compatibility matrix, lock 31

Compensation log records 36

Complex objects 40

Concrete lock 30

Concurrency control 25

Con
ict, lock 30

Consistency 7, 25

Constructing change sets from time-

stamps 96

Cooperating transactions 24

Coordinator 121

Copy-on-write 97

Copying pages 65

Cost of main memory 52

Crash recovery 33

Current database 95

Current page table 42

Cursor stability locking 81

Cursor stability 27

DAG locking 30

Data abstraction 5

Data structure repair programs 14

Data-only locking 81

Database management system 3

Database schema 6

Database size 51

Database versions 93, 97, 101

DBMS 3

Deadlock 28, 67, 69

Debit/Credit transaction 19

Defensive programming 14

Degrees of Isolation 27

Density of writes 107

Determining when a page can be

freed 94

Di�erences between a snapshot and

parent 95

Dirty pages 39

Dirty read 25

Disk characteristics 107

Disk crash 33, 36, 37, 38

Disk space fragmentation 111

Distributed transactions 20, 121

Doubly distorted mirrors 37, 118

Dropping snapshots 95, 97, 99

Dumping 35, 37, 103

Durability 7, 33, 36, 60

Dynamic key-range locking 78

Early releasing of locks 58, 59

E�ective error processing 10

E�ective error 10

Embedded systems 9, 17

Engineering databases 5

Environment failures 12

Error correction 10

Error latency 10

Errors 10

Exclusive latch 57

Exclusive locks 28, 56

Extended lock modes 30, 35, 55,

61

Extraction of free list 52

Failfast 11, 33

Failstop 11

Failures 10

Fault-tolerant computing 9

Faults 10

FGBTree 66

Fine-granularity locking with two-

phase commit 121

Fine-granularity locking 30, 35, 55,

60, 63, 75, 82, 130

Fine-granularity types 66

Fine-granularity updates for B-trees

83

FIX-USE-UNFIX 57

Flat transactions 19

INDEX 145

Force policy 39, 46, 129

Forking points in snapshot tree 99

Fragmentation of disk space 113,

130

Fragmentation 111

Free list of physical pages 52

Freeing pages 52, 58, 94, 95, 96

free logical page number 63

free page 67, 73

free physical page 65

Fuzzy checkpoint 36

Garbage collection 45, 52, 58, 99

Global B-tree object 85

Global consistency 20

Global page table 44

Global version of a page 51

global remap 67, 68

Granular locking 30, 30

Group commit 44, 52, 57

Hard faults 11, 13

Hardware failures 12, 33, 58

Heisenbugs 13

Hierarchial data model 5

Higher level page table pages 96

Hot standby 38

Hotspots 39, 126

Imaginary snapshots at in�nity 95

Implicit permanent snapshots 102

Increment/decrement operations 55,

61

Incremental dumping 37, 103

Incremental page table 44, 51, 67

In�nite future snapshot 96

In�nite past snapshot 96

Installing changes 55

Intention locks 30

Intentions list 43

Interval between snapshots 95

IS lock mode 30

Isolation 7, 25

IX lock mode 30

Joins 40

Kent's algorithm 44, 49

Key value node 84

Key-range locking 78

Lampson and Sturgis 43, 121

Large objects 40, 51, 113

Large systems 9, 17

Large transactions 39, 56, 60, 82,

103, 130

Last modi�cation timestamp 96

Latch coupling 68

Latches 57, 65, 68

Latent error processing 10

Latent error 10

Lifetime of a transaction 56

Linear logical-to-physical mapping

45, 107, 110

Local version of a page 44, 51

local remap 67, 68

Lock compatibility matrix 31

Lock con
ict 30

Lock escalation 30, 82

Locking for read-only transactions

103

Locking granularity 30

Locking protocol 28

Locking protocols 77

Locking 28, 56, 57, 59, 67

Log sequence number 36

Log 34

Log-based �le system 107

Log-based recovery 34

Log-structured �le systems 111

Logging 34, 131

Logical database 57

Logical free list 99

Logical identi�er 55

146 INDEX

Logical location 94

Logical logging 36

Logical pages 41, 50

Logical-to-physical mapping 45

Long-lived transactions 23, 103

Lorie's algorithm 42

Lost update 25

Low-level locks 68

LSN 36

Main memory 55

Main-memory data structures for

B-trees 83

Main-memory data structures for

�ne-granularity locking 67

Main-memory data structures with

snapshots 99, 101

Maintenance failures 12

Making changes visible 57, 68, 71,

109

Mapping cache 125

Masking 11

Master pointer 101

Master record 42

Mean-time-to-failure 10, 11

Mean-time-to-repair 10

Media recovery 36, 62, 110, 117,

130

Menas�ce and Landes 43

Mini-batches 24

Mirroring 37, 110, 117

Modi�cation of page table pages

110

Modifying snapshots 97, 105

Modifying the current database 95

MTTF 10, 11

MTTR 10

Multi-level transactions 23

Multi-version concurrency control

103

N-plexing 33

N-version programming 13

Nested transactions 22, 35

Network data model 5

New page table 50

Next-key locking 78

Nonvolatile storage 33

Object-level versions 93

Object-oriented databases 5, 93, 97

Observed behavior 10

Old page table 50

Old versions of a page 94

On-the-
y dumping 103

Operation logging 36

Operations failures 12

Operations on B-trees 76

Ordered lists 77

Ordering of transactions 58, 59

Overhead 52

Page reference 65

Page size 51, 108, 114

Page table caching 52, 125

Page table entry format 50

Page table in shadowed storage 44

Page table page 44, 94

Page table pointer 44, 50, 101, 126

Page table translation lookaside bu�er

125

Page table 41, 50

Page-level locking 44, 60

Page-level updates 56, 82

PageReference 65

PageTable 63

Parity disk 37

Partial rollbacks 35

Partial updates 57

Patching changes 57, 68

patch changes 66

patch changes callback 67, 70

INDEX 147

patch lock 67, 68

Per-transaction data structures 55

Performance of shadow paging 41,

45

Permanent snapshots 96, 101

Persistence 60

Phantoms 26, 29

Physical database 57

Physical page number 61

Physical pages 41, 50, 68

Potential speedup for writes 108

Predicate locks 29

Pre�x omission 81

Previous-key locking 78

Process pairs 14

Protected actions 15

Pseudocode for �ne-granularity lock-

ing 70

RAID 37, 119

Random accesses 40

Range locking 78

Read-only reference 65

Read-only transactions 35, 103

read logical page 64

read logical page no wait 65

read page 66, 72

read page for update 66, 73

read physical page 64

read physical page for update 65

read physical page no wait 64

Real actions 15

Realization of virtual pages 61, 110

Reconstructing change sets from time-

stamps 96

Record identi�er 80

Record-level locking 36

Recoverability 26

Recovery 33, 52

Redo logging 34

Redo 36, 43

Redundancy 37

Reference counting 99

Reference to a page 65

Refreshing a snapshot 93

Relational data model 5

Relaxing durability 60

Relaxing persistence 70

Releasing locks 58, 58, 59

Reliability 10

Remote backups 35

Remote system pairs 14, 38

Renaming a page in cache 65, 109

Repeatable reads 27

Resource shortage 58

Reuter's algorithm 45

RID 80

Root of the page table 50

S lock mode 30

Sagas 24

Savepoints 20

Scanning a table 113

Scanning all pages of a snapshot

95

Schema 6

Secondary indexes 80

Semaphores 68

Sequence number of commit batch

96

Sequential accesses 40, 113

Sequential writes 107, 110

Serial execution 25

Serializability 25, 77

Service accomplishment 10

Service interruption 10

Service outage 11

Shadow page table 42

Shadow paging 34, 39, 41, 42, 44,

49

148 INDEX

Shadow updating 130

Shadowed storage 44, 50

Shadows project 63, 131

Shared latch 57

Shared locks 28, 56

Site loss 33, 38

SIX lock mode 30

Skip list 84

Snapshots 62, 85, 93

Snapshots, applications 103

Soft faults 11

Software failures 12, 58

Software fault tolerance 13

Speci�ed behavior 10

Speedup factor for sequential writes

108

Spheres of control 16

stability lock 67, 69

Stable storage 33

Startup 52

Steal policy 39

Storing changes separately 55

Storing data in page table pointer

126

Strict executions 27

Strict two-phase locking 28

striping 110

Subtransaction 22

Switching to page-level updates 60

Synchronization between snapshots

97

System crash 33, 58

System pairs 14, 38

System R 41, 43, 46, 93

Taking a new snapshot 95, 97

Technological development 52

Temporary snapshots 94, 95, 101,

103

Timestamp of a snapshot 94

Timestamps 51, 96, 103

Top-level transaction 22

TPC-B 125

Transaction models 19

Transaction 7, 19, 56, 66

Transaction-consistency 93

TransactionDatabase 66

Transactions 13

Transient faults 11, 13

Transient versioning 35

Translation cost 125

Traversing the page table 97

Tree locking 30

Tree of versions and snapshots 97

TWIST 45

Two-phase commit 20, 121, 130

Two-phase locking 28, 44, 52, 55

U lock mode 30

Uncommitted data 26, 58

Underlying B-tree 86

Undo logging 34, 39

Undo 36

Undo/redo logging 34

Unique indexes 80

Unprotected actions 15

Unrepeatable read 25

Update lock 30

Update object 84

Update-in-place 34

update mapping 64

Validation 10

Variable-size pages 114

Version identi�cation in object-oriented

databases 97

Versions and snapshots form a tree

97

Versions of the database 97, 101

Views 6

Virtual pages 61, 109

INDEX 149

Volatile storage 33

Waiting for commit 58

Waits-for graph 29

WAL 35

Writable reference 65

Write anywhere 107, 117

Write cache 107

Write optimizations 61, 107

Write-ahead logging 34

X lock mode 30

