
A Multi-User Shadow Paging
Transaction Manager on Mach 3.0

Tatu Ylönen <ylo@cs.hut.fi>

Heikki Suonsivu <hsu@cs.hut.fi>

Helsinki University of Technology
Laboratory of Information Processing Science

SF-02150 Espoo, Finland

September 7, 1992

Abstract

This paper discusses the theory of multi-user shadow paging
[7, 8] and describes an implementation on Mach 3.0. The imple-
mentation makes extensive use of Mach 3.0 features, including mul-
tiple threads, Mach RPC, virtual memory, and asynchronous de-
vice I/O. The implementation provides a page-level transaction
manager for a database system. It allows multiple concurrent
transactions, and provides full crash recovery, locking, and cache
management features. The cache manager uses innovative, previ-
ously unpublished algorithms, and some new innovations are also
presented for multi-user shadow paging.

It turns out that multiple threads and other Mach 3 features
allow a very elegant and efficient implementation.

1 Introduction

The idea of shadow paging is to never overwrite valid data. Modified
pages are always written to unused portions of the database. A page table
is used to map logical page numbers to physical page numbers. During
transaction processing there are two page tables: a current page table in

1

memory and a shadow page table on disk. Only the current page table
is modified while a transaction is active, and at commit time the current
page table is written to disk and made the new shadow page table, thus
atomically changing making the new data a part of the database.

The original idea of shadow paging was presented in [11]. It was
implemented in the System R database manager. System R supported
concurrent operation, and implemented a complicated multi-user shadow
paging system using logs on directory pages [4].

Extending shadow paging to concurrent operation was more difficult
than expected. Some approaches are listed in [15]; however, none of them
is quite satisfactory. The general consensus became that shadow paging
is not appropriate for multi-user systems [4, pp. 239–240].

A simpler multi-user version of shadow paging was presented in [10]
(also briefly described in [1]). However, in a comparison with log-based
methods and differential files [1], its performance was found inferior except
in an environment with only large transactions. The primary overhead
turned out to be updating the page table.

A much better multi-user shadow paging system was described in [7,
8]. In their system, among other things, the overhead due to page table
I/O is greatly reduced by committing several transactions simultaneously.
Their experimental results indicate that shadow paging is better than
logging if the database contains large records, has high locality within a
transaction, or the database is small.

2 Multi-User Shadow Paging

The presentation of shadow paging here differs somewhat from that in
[7]; however, most of the basic ideas are identical.1

2.1 Definitions

A transaction is an atomic operation on the database. The changes made
by a transaction become permanent when the transaction commits. A

1In fact, we independently reinvented most of the ideas in [7], and only later found
out that they had been presented before. Several new, previously unpublished ideas
will be presented in [16].

2

transaction may be aborted (or rolled back) to undo its changes before it
has committed. The changes made by a transaction are either entirely
made (the transaction committed), or not made at all (the transaction
was aborted).

Several transactions can be executing concurrently. The database sys-
tem must ensure serializability; that is, it must guarantee that after the
transactions have been executed, the database will look as if the trans-
actions had been executed in some (arbitrary) serial order, one at a time.
Usually, some sort of locking will be used.

A page is a data block in the database. Its size is usually a multiple
of the size of a disk block. In this paper, all input/output to/from the
database is assumed to be done one page at a time.

A physical page means an actual disk block (or a group of blocks
forming a page) on disk.

A logical page is a page of the database as seen by the application (or
higher levels of the database system). The higher levels only deal with log-
ical page numbers; physical page numbers are private to the transaction
manager.

A page table is a mapping from logical page numbers to physical page
numbers. There is a physical page for each allocated logical page number.
Conceptually, the page table can be thought of as a table which is indexed
by the logical page number, and each slot contains the physical page
number corresponding to that page. In practice the page table is often
stored using two levels.

The free list is a list of unused physical page numbers in the database
(in some systems, a bitmap is instead of a list). The shadow free list is
part of the shadow page table on disk. The current free list is in memory,
and describes the current database state (possibly including uncommitted
transactions). Note that if a crash occurs, the free list in the shadow
page table will always be consistent, and will look as if the uncommitted
transaction(s) had never been started.

The use of a shadow free list is optional. It is possible (and also quite
efficient) to extract the free list from the page table when the database
is opened. Maintaining the shadow free list is fairly costly, and thus in
server-based systems its use is probably undesirable.

The database has a page table pointer, which contains the address of
the shadow page table on disk. It is stored in stable storage. The value

3

of the page table pointer must be valid at all times. Stable storage for
the page table pointer can be implemented by writing it to two blocks,
each with a checksum.

The term remap is used in this paper for the structure (logical pageno,
old physical pageno, new physical pageno). It is used to describe that the
logical page was previously mapped to old physical pageno, but a new
page has been allocated for it, and it is now mapped to new physical -
pageno. Either old physical pageno or new physical pageno can be null

(an invalid page number), meaning that the logical page number was
allocated or freed during this transaction, respectively.

A remap list is a list of remaps. (In an actual implementation remap
lists might be implemented e.g. as a hash table to avoid linear search
times.) All updates made by a transaction are described by its remap list.
A transaction can be aborted by returning all “new” pages on its remap
list to the current free list (no other action is needed), and committed
by creating a new page table where the “new” mappings on the remap
list have replaced the corresponding old mappings in the page table. The
transaction is committed when the address of the new page table has been
written to the page table pointer (the system of course needs to wait for
the earlier writes to complete before writing the page table pointer).

2.2 Single-User Shadow Paging

Using this terminology, single-user shadow paging can be described as
follows.

When a transaction starts, an empty remap list is created for it.

When a transaction allocates a new logical page, a physical page is
allocated, and the structure (logical pageno, null, physical pageno) is put
on the remap list.

When a transaction frees a logical page, the structure (logical pageno,
old physical pageno, null) is put on the remap list.

When a transaction reads a page, its remap list is consulted to find
a mapping for the page. If a mapping is found, it is used. Otherwise,
the page table of the database will is to find a mapping. The appropriate
physical page is then read.

When a transaction writes a page, its remap list is consulted to find
a mapping for the page. If a mapping is found, the page has already

4

been remapped by this transaction, and the new physical page is used. If
there is no such mapping, a new physical page is allocated, the structure
(logical pageno, old physical pageno, new physical pageno) is added to
the remap list, and the page is written to the new physical location.

If a transaction is aborted, all “new” pages on its remap list are put
back on the current free list. No further action is needed, as the trans-
action has only modified unused potions of the database.

When an application requests to commit a transaction, a new page
table is constructed, containing all the mappings in the old page table,
modified by the mappings on the remap list. If a shadow free list is used,
a new list is constructed, containing the contents of the current free list,
plus the “old” pages on the remap list, plus the pages used by the old
page table and free list. The new page table and free list are then written
to disk. When all “new” pages on remap list, the new page table, and
the new free list have reached non-volatile storage, the page table pointer
is updated to point to the new page table. The transaction is now fully
committed. (Note that if the page table has two levels, only the first level
page and the modified second level pages need to be created. Similarily,
if the shadow free list consists of many pages, its tail may be reused).

2.3 Locking and Concurrent Transactions

Concurrent transactions need some control to maintain serializability.
This paper only considers two-phase locking [9, 375–377].

With two-phase locking, a transaction consists of two phases: the
growing phase and the shrinking phase. During the growing phase the
transaction is allowed to lock data items in shared and/or exclusive mode,
and to upgrade shared locks to exclusive locks. However, the transaction
is not allowed to release any locks during this time. Similarily, during
the shrinking phase the transaction can only release locks or downgrade
exclusive locks to shared locks.

The two-phase protocol guarantees serializability, and can be used
even if the operations that will be performed by the transaction are not
known beforehand. It can be easily implemented by locking a data item
in shared mode when it is first read, and locking it in exclusive mode
when it is first written. Without knowledge about the future operations
done by the transaction, it is not possible to release any locks until the
transaction has partially committed.

5

All shared locks can be released when the transaction is partially com-
mitted, as it is then known that the transaction will no longer access the
data item. Exclusive locks cannot be released until the transaction has
been committed. However, if there is only a single thread processing com-
mits as described below, and it is acceptable that a later transaction can
read uncommitted data (but not commit before the uncommitted data is
committed), exclusive locks can be released as soon as the transaction is
partially committed.

2.4 Extending Shadow Paging to Concurrent Trans-

actions

2.4.1 Overview

In this section the concepts developed earlier are used to extend shadow
paging to handle concurrent transactions. The main ideas are that each
transaction has its own remap list, all locking is done on logical pages, and
the locking system ensures that no logical page can be on two remap lists
simultaneously. When a transaction partially commits, its remap list is
updated to the current page table, and the transaction is committed very
similarily to the non-concurrent case. The remap lists of multiple par-
tially committed transactions can be merged, and multiple transactions
committed simultaneously.

2.4.2 Two-Phase Locking

A page is locked in shared mode when it is first read, and in exclusive
mode when it is first written. As a result, any page on a remap list is
exclusively locked. Since only one transaction can have an exclusive lock
on a page, a page can never be on more than one remap list.

Any number of transactions can be active simultaneously. The locking
protocol will ensure serializability. Occasionally, two or more transactions
may deadlock; in such a case, one of the transactions has to be aborted.
Aborting a transaction is very cheap, as all that is needed is to put the
“new” pages on its remap list back to the current free list.

6

2.4.3 Commit Processing

Whenever an application requests the database system to commit a trans-
action, the transaction is put in partially committed state. All shared
locks held by the transaction can be released at this point.

To actually commit transactions, the database system will periodically
find all transactions that are partially committed.

Commit processing begins by finding the set Tpc of partially committed
transactions. A new page table is constructed by applying the remap lists
of all Tpc to the current page table, and the new page table is written to
disk. There is no need to reconstruct the entire page table; instead, since
the page table itself is shadowed, only the modified pages need to be
written. If a shadow free list is used, it is constructed (see below) and
written to disk.

The commit process will have to wait until all “new” pages on remap
lists of Tpc, as well as pages used by the new page table and the new free
list, have reached non-volatile storage. When they are safely on disk, the
page table pointer can be written to stable storage.

When the page table pointer has reached stable storage, all Tpc are
fully committed. The “old” pages on their remap lists are put on the
current free list, and the applications are notified of a successful commit.

2.4.4 Shadow Free List

If a shadow free list is used, it can be constructed at commit time to hold
the following pages numbers.

• All pages on the current free list

• All “old” pages on remap lists of Tpc

• All “new” pages on remap lists of all transactions other than Tpc

• All “old” pages of the old page table and the old free list

The shadow free list is only used when the database is opened (possibly
after a crash).

An alternative to using a shadow free list is extracting the current free
list from the shadow page table when the database is opened. This avoids

7

the cost of computing and writing the shadow free list at every commit,
and incurs only minor costs at startup time. In large systems where the
database is managed by a multithreaded server, it is probably best not to
maintain a shadow free list. In small applications without a centralized
database server, the use of a shadow free list somewhat speeds up opening
the database.

Assuming database pages are 8kB, and the size of the database is
1GB, there are about 130.000 pages in the database, and about 64 pages
in the page table. Reading and processing the page table will take at
most a few seconds.

2.5 Evaluation

An interesting feature of multi-user shadow paging is that due to commit
merging its I/O overhead approaches zero as the level of concurrency
increases. Thus, if locking and I/O bandwidth do not limit transaction
throughput, very high TPS (transactions per second) rates can be achie-
ved.

Assuming that the total I/O bandwidth does not become a problem (it
can be solved by adding more disks), response time depends on how often
commits are done. The time needed for a commit is in the worst case
twice the maximum duration of a commit. Further speedup is possible if
the shadow page table and the page table pointer are stored on a separate
disk.

Except for the page table address, all data is stored as normal non-
volatile database pages. If multiple disks are used, I/O can be divided
quite evenly between disks. Provided that locking does not become a
bottleneck, the achievable TPS rate should improve linearily as a function
of the number of disks. Also, CPU time overhead per transaction is very
small, so CPU time should not be a bottleneck. Since the algorithm is
most easily implemented as a multithreaded server, it adapts nicely to
multiprocessors.

The biggest performance problem with shadow paging is the cost of
reading the page table if it is not in the cache. However, if the disk cache
is sufficiently large, the page table can be held in the cache. With 8 kB
pages and 4 byte page table entries, the size of the page table is 1/2000
of the size of the database. For a 1 GB database this means 0.5 MB of
page tables; for a 1000 GB database the size of page tables is 500 MB.

8

At current cache memory prices, considering the database size, it is quite
realistic to use this much memory for caching the page table.

3 Implementation

3.1 Overview

We have implemented a multithreaded Mach server called ioserv which
implements concurrent shadow paging. Clients talk to the server using
Mach 3.0 RPC. The transaction server talks to the device server to ac-
cess devices. (Actually, we have a separate small server called opendev,
which opens a device and passes its device port to ioserv. The opendev
server and the actual device may reside on a different machine than the
transaction server.)

The ioserv transaction server provides the following functions (mig-
generated RPC interfaces):

open database(server, host, device, db port return, pagesize return)
close database(db port)
start transaction(db port, transaction id return)
commit transaction(db port, transaction id)
abort transaction(db port, transaction id)
alloc page(db port, transaction id, pageno return)
free page(db port, transaction id, pageno)
read page(db port, transaction id, pageno, data return)
write page(db port, transaction id, pageno, data)
read page hint(db port, transaction id, pageno)

All I/O is done with full pages. There is no way to bypass the trans-
action system. Transactions are identified by integers (actually just a
sequence number of the transaction). Inside the transaction server, there
is a data structure for each active transaction.

The server has a pool of threads waiting for user requests. When a
request arrives, a thread begins to serve it. The thread may block (e.g.
waiting for a lock) while processing the request.

Many threads may be executing normal database operations con-
currently. Access to critical data structures is protected by locks. For
this purpose, Mach cthreads style mutexes are used. Sometimes, a thread
needs to block on a lock, I/O wait, or pending commit processing. For

9

this purpose, cthreads style conditions are used. A single thread is used
to do all the commits. It will sleep if it has no work. It can commit many
transactions simultaneously.

We have chosen not to store the free page list in the database. Instead,
we extract the free page list from the page table when the database is
opened. In memory, we have a free list for physical page numbers, and a
free list for logical page numbers.

3.2 Transaction Manager

The transaction manager implements concurrent shadow paging. It uses
the cache manager to do disk caching and I/O and the lock manager to
maintain locks on pages.

3.2.1 Processing of a Transaction

A transaction is started when an application calls the start transaction

function. A data structure is created for the transaction, an identifier
is allocated, and the structure is stored in a per-database hash table of
transactions.

Most operations begin by looking up the transaction from the hash
table. To read a page, the logical page is first locked in shared mode by
calling the lock manager (this operation may block). If the lock manager
reports deadlock, the transaction is aborted. Otherwise, the logical page
number is mapped to a physical page number by first looking for a remap
on the transaction’s remap list, and if not found, by mapping the page
number using the page table. The cache manager is then called to read
and return the data. Write operations are done similarily, except that if
the page was not already on the remap list, a new page will be allocated,
added to the remap list, and the page will be written to it. Allocating
and freeing pages only affects the remap list.

If the transaction needs to be aborted, either due to a request from
the application, or due to an error (such as deadlock), all “new” pages on
the transactions remap list are put back to the system’s free list the data
structure of the transaction is removed from the hash table and freed.

When an application requests to commit a transaction, the trans-
action’s data structure is put on a list of transactions waiting to be com-

10

mitted, and the commit thread is awakened if it was waiting for work.
The current thread is suspended until commit processing is complete.

When the commit thread begins executing (or has finished processing
the previous batch of commits), it takes all partially committed trans-
actions (these are on the commit list) and empties the list. It will then
install the mappings on their remap lists into the page table, allocating
new pages for changed page table pages. All pages modified by the trans-
actions, and the modified mapping pages, are flushed to disk. When all
pages have reached disk, the root pointer is written to two adjacent phy-
sical pages. When the root pointer pages have reached disk, the trans-
actions are irrevocably committed. Their “old” pages are put to the
systems free list, and the threads processing the application commit are
awakened.

3.2.2 Atomic storage of the root pointer

The root pointer is stored twice, in physical pages 0 and 1. Both root
pointers are normally identical, and contain a checksum (actually a CRC).
When opening the database, both root pointers are read. If they are
identical, no special actions are needed. If they differ, their checksums
are verified, and the pointer with the correct checksum is used. If both
checksums are valid but the pointers are different, both root pointers
point to a valid page table. We arbitrarily pick pointer 0.

3.2.3 Crash recovery

Crash recovery must be done whenever the database is opened. In our
case, the only thing to do is extracting the free page list from the page
table.

To extract the list, we create a bitmap containing a bit for each phys-
ical page of the database. Physical pages 0 and 1 are marked as used, as
they contain the root pointers.

Then, for each page of the page table, for every pointer on the page,
if the pointer is valid, we mark the corresponding page as used in the
bitmap. If the pointer is invalid (null), we put the logical page number
corresponding to the pointer on the logical page free list.

We then go through the bitmap, putting all those page numbers which
have not been marked as used on the physical free page list.

11

3.3 Cache Manager

The cache manager is an independent subsystem providing efficient cache
management on top of Mach 3.0. The cache manager deals with physical
pages.

3.3.1 ELRU Page Replacement Method

The cache manager uses ELRU page replacement strategy [13] to add
LFU (Least Frequently Used) behaviour to a LRU (Least Recently Used)
cache. ELRU behaves very similarly to GCLOCK [3, 12], but does not
suffer the bad worst case of GCLOCK. ELRU is simple to implement and
provides almost constant and quick page replacement time.

The ELRU method (figure 1) is based on having several LRU lists for
different priorities similar to previously presented methods [2, 6]. As a
general cache manager it is not acceptable to require application inter-
vention to set the priorities, so ELRU uses page requests by applications
to quantify the priority each page should have. This is done by moving
the page to a higher priority LRU list each time the page is requested.
The pages are inserted in the ELRU structure, not at the bottom list,
but to the the insertion list to give the pages reasonable initial priority.
To find a page to replace, simply take the least recently used page in the
bottom priority list. If the list became empty, all lists are “rolled” a step
down, thus a page once frequently used but now unused will wander from
the high priority list towards the bottom list. For more ideas and detail,
see [13].

ELRU is less trivial to implement than GCLOCK would be, more so
in hardware. For our application, however, it seems quite reasonable
solution.

3.3.2 The Cache Structure

The cache structure is presented in figure 2. The pages are linked in the
ELRU structure by their priority and to a hash table by the page number.

To avoid copying, page descriptor and data are kept separate. If
the data was copied by the application, the pointer in the descriptor
is replaced and original data freed.

To avoid copying the cache system keeps the page buffer and page

12

✒✑
✓✏✒✑
✓✏
✒✑
✓✏✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✻

✻

✲

✲

✲✲

✲

✲

✲

✲

✲

Frequently used pages

New pages

Page replacement will start hereReplace

Insert

130

129

128

127

126

125

inserted here

Figure 1: ELRU structure.

✄✄✲

✲

❄❄

✄
✄
✄
✄
✄
✄✄✗

✲
❄

✟✟✟✟✙

❄

.......................✟✟✙

❄

❄

❍❍❍❍❥

❄

One page

Pages

Page data

Page descriptor

(Page number)

(Page priority)

Hash 3

Hash 2

Hash 1

Hash 0

ELRU structure

Hash table

Figure 2: The cache structure.

13

descriptor (bucket) separate, thus when the application takes a page,
copies it to a new buffer and requests a write for that buffer, no more
copying needs to be done, but instead the pointer to the new buffer is
replaced and the old buffer can be freed.

The cache manager provides the following functions, used by the
ioserv:

cache init(cache, device, cache size, device size)
cache free(cache)
cache read hint(cache, pageno)
cache read(cache, pageno, data return)
cache release(cache, pageno, data return)
cache flush wait(cache, pageno)
cache flush write(cache, pageno)
cache write(cache, pageno, data return)

The pages are identified by the physical page number, unlike the
ioserv, which uses logical page numbers. All I/O goes through the cache
manager to the opendev server.

3.3.3 Page replacement

The cache manager uses Mach 3.0 asynchronous writes to allow the device
driver (or the device itself) to optimize seeks.

The page replacement algorithm is presented in figures 3.3.3, 4 and 5.

3.4 Lock Manager

The lock manager provides two-phase locking [9, 375-377] and deadlock
detection. Our multi-user shadow paging implementation uses logical
page numbers to identify locks.

Locks are stored as structures in a hash table. The deadlock detection
algorithm uses wait-for graph search.

The lock manager provides the following functions, used by the ioserv.

locks db init(locks db, size)
locks transaction init(locks db, locks transaction)
locks transaction free(locks db, locks transaction)
locks db free(locks db)

14

replace one page(page)
setup Mach reply port
asynchronous write(page)

Figure 3: Replace one page.

write reply(port)
map the reply port to a page
if the page has become dirty while the write was active
no need to do anything

else
remove the page from the cache

endif

Figure 4: Mach write reply processing.

replace()
while more free space needed
take a page from the bottom LRU list
if the page is dirty
replace one page(the page)

else
remove the page from the memory

endif
end while

Figure 5: Page replecement request.

15

locks lock shared(locks db, locks transaction, pageno)
locks lock exclusive(locks db, locks transaction, pageno)
locks unlock shared(locks db, locks transaction, pageno)
locks unlock all shared(locks db, locks transaction)
locks unlock all(locks db, locks transaction)

4 Conclusions and Future Work

The Mach 3.0 microkernel system seems to be a good, production level
operating system. The kernel interface is quite clean and straightforward
to program with, and has no kludgy feel that the traditional Unix has.
Mach proved to be a stable environment.

The usefullness and efficiency of asynchronous writes did create a lot
of discussion. We did not do any comparision between synchronous and
asynchronous writes.

The system could be implemented in about 5000 lines of code, which
we think is quite reasonable for a system which can be a base for many
applications, like file systems, database systems and any applications
which require transaction processing.

We also have several completely new ideas on shadow paging [16, 14],
that warrant further research. These papers will address problems like de-
laying allocation of physical pages until commit, releasing exclusive locks
as soon as a transaction has partially committed, using several root point-
ers to avoid bottlenecks, dumps of a live database, two-phase commit in a
distributed system, concurrent access to the parts of a page, management
of large objects and shadow paging for variable-sized objects.

References

[1] Agrawal, R., Dewitt, D. J. Integrated Concurrency Control and

Recovery Mechanisms: Design and Performance Evaluation, ACM
Transactions on Database Systems, Vol. 10, No. 4, 1985, pp. 529–
564.

[2] Michael J. Carey, Rajiv Jauhari, Miron Livny, Priority in DBMS

Resource Scheduling, Proceedings of the Fifteenth International Con-
ference on Very Large Data Bases, Amsterdam, 1989, pp. 397-410.

16

[3] Wolfgang Effelsberg, Theo Haerder, Principles of Database Buffer

Management, ACM Transactions on Database Systems, Vol. 9, No.
4, December 1984, pp. 560-595.

[4] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price,
T., Putzolu, F., Traiger, I. The Recovery Manager of the System R

Database Manager, ACM Computing Surveys, Vol. 13, No. 2, 1981,
pp. 223–242.

[5] Haerder, T., Reuter, A. Principles of Transaction-Oriented Database

Recovery, Computing Surveys, Vol. 15, No. 4, 1983, pp. 287–317.

[6] Rajiv Jauhari, Michael J. Carey, Miron Livny, Priority-Hints: An

Algorithm for Priority-Based Buffer Management. Proceedings of
the Sixteenth International Conference on Very Large Data Bases,
Brisbane, Australia, 1990, pp. 708-721.

[7] Kent, J. M. Performance and Implementation Issues in Database

Crash Recovery, Ph.D. Dissertation, Department of Electrical Engi-
neering and Computer Science, Princeton University, 1985.

[8] Kent, J., Garcia-Molina, H., Chung, J. An Experimental Evaluation

of Crash Recovery Mechanisms, Proc. ACM Principles of Database
Systems, 1985, pp. 113–121.

[9] Korth, H. F., Silberschatz, A. Database System Concepts, McGraw-
Hill, New York, 1986.

[10] Lampson, B., Sturgis, H. Crash Recovery in a Distributed Data

Storage System, Computer Science Lab., Xerox PARC, 1979.

[11] Lorie, R. A. Physical Integrity in a Large Segmented Database, ACM
Transactions on Database Systems, Vol. 2, No. 1, 1977, pp. 91–104.

[12] Alan Jay Smith, Sequentiality and prefetching in database systems,
ACM Transactions on Database Systems, Vol. 3, No. 3, September
1978, pp. 223-247.

[13] Heikki Suonsivu, Extended Least Recently Used Algorithm, artic-
le/tech report, in preparation, 1992.

[14] Heikki Suonsivu, Shadowing Variable-sized Objects, article/tech re-
port, in preparation, 1992.

17

[15] Verhofstad, J. S. M. Recovery Techniques for Database Systems,
Computing Surveys, Vol. 10, No. 2, 1978, pp. 167–195.

[16] Ylönen, T. Concurrent Shadow Paging: An Alternative to Logging?,
Technical Report, Laboratory of Information Processing Science,
Helsinki University of Technology, 1992.

18

