
Shadow Paging Is FeasibleTatu Yl�onen <ylo@cs.hut.fi>Department of Computer Science, Helsinki University of TechnologyOtakaari 1, FIN-02150 Espoo, FinlandAbstractShadows is a high-performance database system that uses shadow pa-ging without any logs for recovery. It supports ACID transactions, mediarecovery, �ne-granularity locking, and e�cient index management. Thispaper describes the I/O, recovery, and concurrency control issues invol-ved and their solutions. An overview of the implementation is provided,together with performance results.1 IntroductionA database system must provide atomic transactions, consistency of data, iso-lation of concurrent transactions, and durability of committed transactions.Additionally, large systems must provide high performance and features suchas on-the-
y dumping and media recovery.Most database systems use logs to ensure atomicity and durability. If thesystem crashes in the middle of a transaction, the log can be used to bring thedatabase into a transaction-consistent state. If a disk or other hardware devicefails, a backup together with the log can be used to recover the state of anycommitted transactions. Currently almost all commercial systems and mostresearch prototypes use some form of logging for recovery.An alternative method for achieving atomicity (shadow paging) is to havea mapping from logical to physical database pages (page table), and executetransactions by allocating new physical pages for any modi�ed pages and thenatomically update the mapping to re
ect the new database state. Atomic map-ping update can be achieved by using two page tables and a \current" bit instable storage [7], by using shadow paging together with logging [3], by recor-ding changes in an intentions list (kind of temporary redo log) in stable storagebefore changing the page table [6], or by constructing a new page table whichpartially shares the old page table and then atomically updating a page tablepointer in stable storage [5].Shadow paging has not been used in database implementations because ithas had inferior performance and it has not been obvious how to implement �ne-granularity locking for concurrent transactions, media recovery, and a numberof other desired features.Shadow paging has recently become more competitive due to developmentin disk and main memory technologies. By combining several techniques, such1



as log-structured �le systems [9, 11, 12], striping [12, 15], mirroring [10], shadowupdates [1], and group commit [5], the performance of shadow paging can nowbe made to compete with the best log-based systems. New algorithms havebeen developed to implement other desired features, such as fast snapshots(transaction-consistent copies of the database) that can be used to do arbitraryread-only transactions or on-the-
y dumping (backups) without any locking[16].There are a number of application areas where shadow paging may o�er im-portant bene�ts compared to log-based systems. Examples include embeddeddatabases in telecommunications, where fast recovery can be extremely impor-tant, and decision support applications with large read-only transactions mixedwith small updates (snapshots can be used to execute them without locking).We have implemented a prototype system using shadow paging without anylogs. The prototype is a full database system, with emphasis on the data ma-nager (recovery, concurrency control, and index management issues). Otheraspects of database management, such as data models, query languages, anddistribution, have only been given cursory consideration to determine the featu-res needed from the database system kernel. The algorithms and the structureof the implementation are described in this paper, together with performanceresults.The author is not aware of any serious database system that uses shadowpaging without logs. Particularly, the index management and media recoveryimplementations for shadow paging are novel. Performance results suggest thatthe prototype is the �rst shadow paging system that can compete with com-mercial log-based databases.This paper is organized as follows. Section 2 describes page-table level sha-dow paging, and a number of improvements to it that make shadow pagingreally usable. This level of the system is capable of executing only one tran-saction at a time. Section 3 introduces concurrent transactions with page-levellocking. Concurrent transactions are implemented on top of page-table leveltransactions, which are used to execute commit batches (multiple transactionsare committed together as a single page-table level transaction). Section 4 desc-ribes how �ne-granularity locking for transactions is implemented, and discussesextended lock modes and index management. Section 5 gives performance re-sults for the TPC-B benchmark [2]. Section 6 concludes the paper. Due tospace constraints, snapshots and two-phase commit are not considered in thispaper; the interested reader is referred to [16].2 Page Table LevelThe general idea in shadow paging is that existing data is never overwritten,but instead modi�ed pages are always written to new locations on disk, anda mapping is used to keep track of the current location of each page. Themapping is called the page table. All pointers in the database refer to logicalpage numbers, and must be mapped to physical pages using the page tablebefore reading. 2



To execute an arbitrary atomic transaction, all modi�ed data pages arewritten to new locations, and then a new page table is constructed and writtento fresh pages on disk, and �nally a page table pointer is written to atomicallyswitch to the new permanent database state.In our implementation, the page table is a tree structure with a �xed numberN of slots in each node. On the lowest level (leaf nodes) each slot contains apointer to a data page. The array of slots in the node is indexed by L mod N(where L is the logical page number). On the second lowest level, the array in anode is indexed by (L=N) mod N , and generally by (L=N level�1) mod N . Thedepth of the page table is logN Lmax, and grows dynamically whenever needed.There is a page table pointer which records the current depth of the page tableand the physical location of the root page. The page table pointer is storedtwice to implement stable storage.The page table can be used to execute one transaction at a time by storinguncommitted changes in a remap in main memory. The remap is a mapping ofhL;Pnewi, where L is a logical page number (used as a key) and Pnew is the newphysical location of the page on disk (or nil if the page has been freed by thistransaction). A read is performed by �rst checking if there is a new version inthe remap, using that version if found, and by mapping through the page tableotherwise. A write is performed by allocating a copy of the page and addingit to the remap (unless we already have a new copy of it), and modifying thecopy. Note that actual copying of pages can be avoided by renaming the pagein cache to match the new address.The transaction can be aborted by simply freeing all new copies in the re-map. It can be committed by constructing a new page table. The new pagetable is constructed by allocating new copies of modi�ed page table pages butsharing unmodi�ed parts. Both the modi�ed data pages and modi�ed pagetable pages are then written to disk, and when the writes have completed, thepage table pointer is written (at which point the transaction commits perma-nently). Old physical pages are freed once the page table pointer has beenwritten. The algorithm is outlined in Figure 1.Note that new copies of page table pages can be managed easily by addinga page table level �eld to the remap, and using the combination of L and levelas a key. For data pages, L is the logical page and level is 0; for page tablepages, L is the number of the �rst page mapped by the page table page, andlevel is the level of the page in the page table (1 for leaf-level page table pages).2.1 Making Writes SequentialShadow paging implies the force policy; that is, all modi�ed pages must bewritten to non-volatile storage before a transaction can commit. It is thus veryimportant to make these writes e�cient.The new physical locations of pages are not used for anything until thetransaction requests to commit (except, on the implementation level, to accessthe pages from the cache). It is possible to use arbitrary identi�ers until thatpoint, and only when committing do the actual allocation of physical pages.At that point, it is known which pages are going to be written. Space for the3



for L in each logical page in the remap dofor level = 1 to pagetable depth doif no entry in remap for L� L mod N level at levelMake a copy of page table page L� L mod N level at levelAdd entry (L� L mod N level; level; Pnew) to remapUpdate mapping for L at level � 1 in L� L mod N level at levelSave old physical position of the page in a listWrite all modi�ed pages to diskWrite page table pointerFree old physical pagesFigure 1: Algorithm for page table level commit.new pages can be allocated from a contiguous region of disk (or several disksto implement striping), and all of the writes can be combined to a sequentialwrite. Modi�ed page table pages can be written the same way.The commit algorithm is divided into several steps: �rst new copies aremade of all a�ected page table pages, then space is allocated for the data andpage level pages, then the new addresses are updated into the new copies ofpage table pages, and �nally all modi�ed data is written to disk and the pagetable pointer is updated. The new algorithm is outlined in Figure 2.Late allocation of physical page numbers is implemented by allocating vir-tual page identi�ers instead of physical page numbers for new copies. Old pagesin the cache are renamed whenever possible to avoid copying. At commit, aphysical page number is associated with each virtual page identi�er, and thephysical page number is stored in the page table.The cache can associate physical pages with virtual identi�ers before committo cope with very large update transactions. It will still need to maintain amapping from the virtual identi�ers to the physical page numbers, but is freeto 
ush dirty pages before commit. When the cache does this, it has enoughdata to again make long sequential writes.Sequential writes are only possible if there is su�cient contiguous free spaceon disk. Without any countermeasures, free space will quickly get fragmented,and no large contiguous regions will exist. We do space management much inthe same way as log-structured �le systems [9, 11]: we divide the disk spaceinto �xed-size segments, and have a separate thread actively cleaning up seg-ments. Any pages that the cleanup thread wishes to move are made part of thenext page table level transaction (i.e., copied to new locations without actuallychanging them), and they will be freed after the next commit. Writes are doneto empty segments only, which implies that they can be made sequentially.The relative cleanup cost depends on the fraction of free space available in thesegments being cleaned up.The system collects statistics about the modi�cation rate of each logicalpage. Pages which have short life expectancies are written to the same segment,making it likely that the segment will quickly become empty even withoutcleanup. Pages which are long-lived are also put together, making it likely that4



for L in each logical page in the remap (note: all at level = 0) dofor level = 1 to pagetable depth doif entry in remap for L� L mod N level at levelthen break /* do next iteration of outer loop */Make a copy of page table page L� L mod N level at levelAdd entry (L� L mod N level; level; Inew) to remapAllocate physical storage for all virtual identi�ers in the remapfor each mapping in the remap (L and level; all levels) doSave old physical position of the page L at level in a listUpdate mapping for L at level in L� L mod N level+1 at level + 1Write all modi�ed pages to disk (sorted by position)Write page table pointerFree old physical pagesFigure 2: Algorithm for page table level commit with sequential writes.the segment is going to be almost full for a long time, reducing the need forcleanup.2.2 Media RecoverySince there is no log, backups plus log cannot be used for media recovery.Instead, a variant of mirroring is used. The idea is to have two copies of thepage table pointer (on two failure-independent disks), two copies of each pagetable page, and two copies of each data page. There are no �xed pairs of diskswhich mirror each other; there is just the constraint that the two copies ofa page must be on failure-independent disks. Again, the actual allocation ofphysical page numbers is postponed until the commit batch, and the pages willthen be allocated as two sequential regions on independent disks. There is alocation for the page table pointer on each disk, and it is written to the twodisks which are most idle (a sequence number is used to identify which diskcontains the newest pointer at recovery time).This implementation of mirroring has some interesting consequences. First,a page can be read from the more idle disk (as in normal mirroring). Second,since both writes are sequential, and are done to di�erent disks in parallel (andthe seek time is small compared to the transfer time for long writes), thereis little write penalty for doing mirroring. This gives most of the bene�ts ofdoubly distorted mirrors [8], but no special hardware of any kind is needed. Ifthe system crashes in the middle of the write, neither copy will be part of thecommitted database, and thus will never be read.Recovery from a corrupted disk block is simple: just read the other copy(corruption can be detected either by the disk controller, or by the databasesystem when it fails to �nd a proper page header) and schedule the page forrelocation (as in cleanup). If a whole disk crashes, data can be recovered bytraversing the page table, and relocating all those pages which have one copyon the failed disk. 5



2.3 Other Optimization IssuesShadow paging, especially the write optimization described above, destroysany clustering between di�erent logical pages. Thus, clustering is only possiblewithin a logical page. However, it is easy to have logical pages of di�erent sizesby recording the size of the page in the page table. Small pages can be used forfrequently updated data with random accesses, whereas large pages are goodfor data which is typically accessed sequentially, such as blobs and multimediadata.In a system with multiple disks, one issue is balancing the load amongthe disks. One of the heuristics used to select on which disk to write next is towrite to the disk which is most idle. This tends to move more tra�c to the disk,essentially balancing load. Other factors that a�ect the allocation of segmentsinclude independency of copies (absolute constraint), available disk space, andrecent allocation patterns.One small but important optimization is caching logical to physical map-pings. There is a small translation cache (\translation lookaside bu�er" [13])that is used to cache frequently used mappings. Benchmarks indicate that asmall 4096-entry 2-way set-associative cache [13] handles over 90 % of all trans-lations in TPC-B.2.4 Structure of a Page Table EntryThe size of a page table entry is 16 bytes. This allows 40 bits for each physicalpage number, 40 bits for timestamp (used for snapshots and on-the-
y incre-mental dumping), and one byte for page size, 
ags and free space information.With 512 byte blocks, 40 bits for the address allows 512 terabyte maximumdatabase size. The timestamp is a commit batch sequence number. At tenbatches per second it wraps around after 3 500 years. Page size is stored aslog2 S � 9 in 4 bits. 4 bits are available for 
ags and allocation information.Typical page sizes are a few kilobytes for frequently updated relational data,and up to 1 MB for blobs and multimedia data. The size of the page table isabout 0.01 % to 1 % of the size of the database. In many applications it �tsentirely in main memory cache.2.5 ExampleTo clarify what has been explained so far, let us consider a simple example withjust basic shadow paging, mirroring, and sequential writes.Suppose we have a transaction which executes the following sequence ofactions (page numbers refer to logical pages): Read[1], Read[10], Allocate[8],Write[8], Write[1], Write[10]. Assume that logical page 1 is originally stored at1:55 and 2:78 (disk-number:block) and 10 at 1:98 and 3:12. Assume there isonly one page table page, stored at 2:17 and 3:103. All pages are assumed tobe eight physical blocks (4 kB) in size.The remap after executing this transaction will contain f(8, 0, I0), (1, 0,I1), (10, 0, I2)g, where each entry is of the form (logical, page-table-level, new-identi�er). The transaction then requests to commit. First, all a�ected page6



table pages are identi�ed and added to the remap: (0, 1, I3) in this case. Then,disk space is allocated for all of the new pages. Assume there is enough spaceavailable at 2:50 and 3:200. Space is allocated: I0 at 2:50 and 3:200; I1 at 2:58and 3:208; I2 at 2:66 and 3:216; I3 at 2:74 and 3:224. Old addresses of modi�edpages are saved in a list, resulting in (1:55, 2:78, 1:98, 3:12, 2:17, 3:103). Newaddresses for data pages are stored in the page table page. All writes are thensorted and performed as a sequential write in parallel to both disks. (If therehad not been enough contiguous free space in one location, the allocation wouldhave been made as a few large regions.) Finally, when all writes have completed,the new page table address (2:74, 3:224) is written to page table pointers ontwo disks (say, 1 and 3). Then the old copies of the pages are freed.3 Concurrent Transactions with Page-Level UpdatesEverything that has been described so far deals with a single transaction at atime. From now on, we will be having multiple concurrent transactions, andwhat has been the single transaction so far will be called a commit batch.The idea is that each transaction has its own remap, and two-phase loc-king on logical page numbers is used for concurrency control. If a transactionrequests to abort, any \new" copies in its remap are freed and its locks arereleased. If it requests to commit, it is put in a queue of transactions waiting tobe committed, and a separate thread will periodically take all transactions fromthe commit queue, combine their remaps together, and commit the combinedsingle transaction (commit batch) exactly as described above. This is possiblebecause a transaction must have an exclusive lock for any logical page it hason its remap, so there can be no con
icts between the remaps of individualtransactions.3.1 Early Releasing of LocksWe have shown in [14] that all locks of a transaction can be released when thecommit request is received, provided that actual commits are performed in thesame order as the commit requests are received (implied by queuing committingtransactions), and transactions only read and write data that has been eithercommitted or at least commit-requested. This was called partially strict two-phase locking, and it was shown that such locking maintains strictness as longas an abort does not follow the commit request (an abort caused by deadlock orrequested by the transaction cannot follow the commit request, so such abortscan only happen due to lack of disk space or other exceptional errors). If anabort follows the commit request, we suggested that all active transactions beaborted.This optimization reduces the time exclusive locks are held, and it is par-ticularly important with main-memory databases and shadow paging, wherethe cost of commit processing is relatively high. The bene�t is greatest whenthe application makes non-commutative updates to hotspot data.A requirement for this optimization to work is that when locks are released,other transactions will see commit-requested data. What we actually do is that7



Prevent transactions from merging remapsBuild new page tables (allocate and update pages in cache)Update in-memory copy of page table pointerClear global remapPermit transactions to merge remapsWrite modi�ed pages to disk (sorted by position)Write page table pointer to diskFree old physical pagesFigure 3: Page table level commit when concurrent transactions are considered.there is a separate global remap in addition to the per-transaction remaps, andwhen a transaction requests to commit, it merges its own remap to the globalremap, then releases its locks, and enters a wait until it has been committedor aborted by the commit thread. Note that it is possible that a logical pagebe on both the global remap and a local remap; however, the transaction thathas it on local remap has the page exclusively locked and the page must havebeen on the global remap before this transaction locked it. The older versionof such entries is freed during the merge. This frees the intermediate version ofthe page but not the original version on disk (which cannot be freed until thetransactions have really committed).Reads will �rst check the transaction's own remap, then the global remap,and if these fail read the page using the page table. Writes will �rst check ifthere already is a copy on own remap, then check the global remap (and makea copy to the local remap), and if these fail read it using the page table andmake a copy to the local remap.The commit batch works by taking the global remap, building the new pagetables in cache, and then it updates an in-memory copy of the page table pointer(before actually writing anything) and clears the global remap. During this timeno additions may be made to the global remap (thus, commit requests mustwait while the page tables are built). Since these are main-memory operations,they are fast. The algorithm is outlined in Figure 3.The commit batch executes in a loop, starting a new batch as soon as theprevious one has completed, provided there is work to do.3.2 ExampleAs an example, suppose there are three transactions: T1: Read[1], Read[4],Write[1], Write[4], Commit; T2: Read[1], Write[1], Commit; T3: Read[1], Write[5],Read[4], Commit. For clarity, suppose the transactions execute in this order,and T1 and T2 end up in one batch, and T3 in another. Physical page numbers,mirroring and other such issues will not be considered on this level, as they arehandled as described earlier for the single transaction.T1 will have the following remap when it requests to commit: f(1, 0, I0),(4, 0, I1)g. This remap will be merged with the global remap, and all locks arereleased. T2 then executes. Page 1 is read from I0 as indicated by the global8



remap; when it is written, T2's own remap becomes f(1, 0, I2)g. This is thenmerged with the global remap, freeing I0, and the global remap becomes f(1,0, I2), (4, 0, I1)g. T2's locks are then freed.Suppose that a commit batch now starts, and takes the global remap, makesallocations and builds a new page table as indicated by it, and clears the globalremap. It then begins to write. T3 will be executing in parallel; the onlyrestriction is that if it commits while the page table is being built, it mustwait until the build is complete. T3 will read page 1 from I2 if the read isperformed before the page table is built, and from the new physical location (incache) using the new page table (in cache) if the read happens after the pagetable is built. Similarly for page 4. T3's remap will be f(5, 0, I3)g. This willbe merged with the global remap (now empty) when T3 requests to commit.Transactions T1 and T2 will be awakened by the commit thread when its writeshave completed. This happens asynchronously to the execution of T3. The nextbatch begins then, taking care of T3 and any later transactions.4 Fine-Granularity LockingFine-granularity locking [4] has been di�cult with shadow paging because chan-ges cannot be made directly to data pages. The reason is that if two transactionsmodify di�erent parts of the same page, they cannot commit independentlybecause one might want to abort after the other has committed and alreadywritten its changes to disk, and without a log there would be no way to undo.What we do is that we keep uncommitted changes made by transactionsin a separate data structure in main memory. For example, we record that arecord with with a certain identi�er was modi�ed and keep enough informationto actually do the modi�cation later.4.1 Concurrency ControlTwo-phase locking on logical identi�ers (record identi�ers, key values, etc.) isused for concurrency control. It is quite possible that the actual data moves toa di�erent page while the transaction is active. When the transaction requeststo commit, its changes are made to actual data pages (see below).An important distinction to the page level algorithm is that all locks areon logical identi�ers. The identi�er may identify a record, be a key value, referto an entire table, or something else. There is a hierarchy of lock identi�ers;hierarchical locking is used [4]. A lock on a logical identi�er is not bound toany particular page; for example, a lock on a single key value covers no pagesat all since the key might move to a di�erent page, whereas a lock on a wholetable covers all pages of that table.4.2 Large TransactionsIf the transaction holds a lock which is known to cover a page (such as a lockon the whole table), it can use the page-level update scheme described earlier.However, if its lock does not cover the page containing the modi�ed data, it has9



to store the change separately until it commits, and modify any reads it makesso that they re
ect the change. When the transaction requests to commit, anyof its page-level updates are merged with the global remap, and any changesit has stored separately are made to actual data pages in cache, creating newentries on the global remap as pages are modi�ed.This is implemented so that a transaction initially uses �ne-granularity loc-king (record locking, key-value locking, or something similar) and stores anychanges in main-memory data structures. If the transaction makes very manyupdates to a table, it takes a coarse granularity lock or table-level lock thatcovers the pages it is changing (\lock escalation"). After that, it is free to usepage-level updates for those pages covered by the lock. It immediately makesthe updates in main memory to the cache, and makes any further updates tothe pages covered by the lock using page level updates. Since the cache can
ush modi�ed pages before commit, transactions sizes are not limited by thesize of the main memory cache.4.3 CommittingActually committing a transaction is handled by a separate commit threadwhich executes batches, one at a time. There is a global remap for pageswhich have been modi�ed and requested to be committed; this remap willform the next commit batch. The modi�cations of each transaction must bemerged to this remap atomically with respect to commit batches. Commitbatch processing is essentially identical to that described in Figure 3.Then a transaction requests to commit, it merges its local remap to theglobal remap, and performs any stored �ne-granularity modi�cations to theactual data pages, using page level updates and putting the new copies of pageson the global remap. We call this patching. No new transaction-level locks areacquired at this time; instead, low-level latches are used to protect consistencyof individual updates. When the transaction has patched all its changes, it freesits local data structures, releases all locks (see early releasing of locks, above),and waits for the next commit batch to commit it.If there is an error during patching, the whole commit batch and all la-ter transactions will need to be aborted. Thus, transactions must check forcommon errors, such as the requested record being nonexistent, while the tran-saction is still active. When consistency checks are performed before actualcommit, a transaction should never need to abort after commit request, exceptin situations such as a system crash or lack of disk space.4.4 Commutative OperationsThis scheme supports commutative operations (extended lock modes). Severaltransactions can have an update mode lock on the same data item as long asthe operation is stored in the per-transaction data structure in a commuta-tive fashion. The data structure must support multiple operations by di�erenttransactions for a single object. 10



4.5 Index ManagementThe same scheme is used for index locking. The operations include insertions,deletions, updates, and range queries. To support locking for range queries,the uncommitted changes of all transactions for an index are stored in a globaldata structure ordered by key value (such as a skip list or a tree). Next-key orprevious-key locking can be used, and both the data structure in memory andthe index on disk are consulted to �nd the next/previous key value.Index management is very clean: the actual index is built above page-leveloperations, and does not need to worry about crash recovery because it ishandled by the underlying shadow paging mechanism, or about transaction-level recovery (abortions) because they are handled by the �ne-granularity layerabove the index. The index is just the basic algorithm (e.g., B-tree) withlatches used for what is called locks in the literature. The �ne-granularity layerabove the index provides arbitrary transactions and transaction-level locking.Implementation is simpli�ed and made more reliable by not mixing the di�erentaspects, and many other index data structures can be substituted with onlyminor changes in the �ne-granularity layer. For a detailed description, see [16,pp. 75{92].4.6 ExampleSuppose a transaction wants to make a search in a B-tree, then insert a record,and then insert a record into another B-tree. Suppose next-key locking [4] isused for B-tree concurrency control, and records are stored directly in the tree.It is assumed that the implementation has three layers: �ne-granularity lockingcode for B-trees (manipulating main-memory data), normal B-tree code, andpage-level shadow paging to implement recovery. The B-tree code uses page-level operations. All transaction-level locking is handled by the �ne-granularitylayer. Low-level locks are not discussed here, but are needed in the implemen-tation on all levels.First, the transaction looks up the �rst record with higher or equal keyvalue to that speci�ed in the query. The record is looked up both in the disk-based B-tree and in the main memory data structure for that index. A lock isobtained on the smaller key value found (as required by next-key locking). Thefound record (from either the B-tree, main memory, or combined from both) isreturned. This process may be repeated several times if the search is a rangequery; if the query is very big, the system may at some point decide to obtaina shared table-level lock and stop taking key value locks.Then, the transaction performs the insertion. This is done by �rst perfor-ming a search to verify that the record does not already exist, and to locatethe next higher key value as needed by the next-key locking protocol. Both thenext key and the inserted key value are locked. Finally, the new record is addedinto the main-memory data structures, and the insertion is complete.The insertion for the other B-tree is performed identically, except that eachtree has its own main-memory data structures and locks.If the transaction had made very many updates, at some point it would11



have obtained a table-level exclusive lock, made any updates in main memoryto the B-tree, and used direct B-tree updates without further locking for therest of its updates.When the transaction requests to commit, the system prevents a new com-mit batch from starting (and waits if the current batch is building page tables).The transaction then merges its remap to the global remap and makes all itsmodi�cations in main memory to the B-tree on disk (adding changed pages tothe global remap). This operation is fast because all relevant pages should bein the cache. Note that unless the transaction was very large, this is the �rsttime that page-level updates are performed. All locks of the transaction arereleased when the changes have been made. From this point on, the changeswill be visible to other transactions through the global remap.Finally, the transaction is inserted into a queue of transactions waiting tobe committed, and a new commit batch is allowed to start. The transactionwaits until the commit batch has either committed it or aborted it (in whichcase all other transactions will be aborted as well).5 Performance ResultsWe have implemented a prototype system using the algorithms in this paper([16] has some more details). It uses shadow paging for crash recovery and hasno logs. Mirroring is used for media recovery. Fine-granularity locking with theearly releasing of locks optimization as described above is used for concurrencycontrol. B-trees are used for indices, with recovery and arbitrary transactionsas outlined above. A simple relational database has been implemented on topof the core system. The prototype totals about 50 000 lines of C++ sourcecode (it has some features not described here, and the source tree contains afair amount of experimental or debugging code).To get some idea about the performance of the system, we have run theTPC-B benchmark [2]. The benchmark simulates a large bank, and all tran-sactions are simple debit-credit updates. Full serializability, durability, andrecovery from any single-point hardware failure are required by the benchmark.The size of the database scales with the benchmark results.The benchmarks were run on a Sun SparcStation 10/402 with 10 1{2 GBSCSI disks from various manufacturers (IBM, HP, Quantum) for the database.The machine had 96 MB main memory, of which 30 megabytes were used fordatabase cache (including page table cache). The results were obtained byrunning TPC-B; most tests were run three times, and the best result was used(to reduce adverse e�ects caused by other users of the same system duringtest). The benchmark is believed to match the o�cial benchmark, except forthe following: it was only run for 5 minutes in each case (to reduce the realtime needed for the tests), and the cleanup thread was not fully active, becauseit would have taken substantial amount of time and e�ort to ensure that ithas reached steady state. Thus, we chose to use a fresh database to keep theresults for each set of parameters comparable. Figure 6 depicts the performancedegradation due to cleanup as a function of time in our con�guration.12



0

20

40

60

80

100

120

140

160

180

50 100 150 200 250

T
ra

ns
ac

tio
ns

/s
ec

on
d,

 a
nd

 9
0%

 c
om

m
it 

tim
e 

lim
it 

(0
.1

 s
ec

 u
ni

ts
)

Multiprocessing level

Multiprocessing Level vs. Performance (TPC-B)

Transactions/second
120 tps (database size)

90% time limit (0.1 second units)
2.0 seconds

Figure 4: Performance of Shadows: transactions per second (upper curve) andthe limit under which 90 percent of all committed transactions complete (lowercurve, 0.1 second units).Current benchmark results (as of May 1995) are given in Figure 4. It givesthe transactions per second rate as a function of the multiprocessing level, andthe time limit under which 90 percent of committed transactions complete. Thedistribution of completion times for a number of multiprocessing levels is shownin Figure 5. The number of aborted transactions is not shown, but was lessthan 0.1 percent of started transactions in all tests.The performance is currently in the same range as good commercial data-bases for the same machine (though commercial bechmarks often use a largernumber of disks). Considering that the prototype has not undergone the sameresearch, design, implementation, and tuning e�ort as commercial log-baseddatabases, the results strongly indicate that it is feasible to build competitivehigh-performance databases using shadow paging without logging.6 ConclusionAn e�cient implementation of shadow paging has been described. Due to spacelimitations, the description has necessarily been too concise to thoroughly coverall the details. The interested reader is referred to [16] for more information.A prototype relational database system with full serializability and recoveryhas been built. The system uses shadow paging for recovery and uses no logsat all. The TPC-B benchmark has been used to measure the performance ofthe prototype.Benchmark results indicate performance in the same class as good com-mercial databases on the same platform. The system can o�er the necessary13



0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4

P
er

ce
nt

ag
e 

of
 tr

an
sa

ct
io

ns

Completion time of committed transactions (seconds)

Distribution of completion times

MPL=1
MPL=50

MPL=100
MPL=150
MPL=200
MPL=250

Figure 5: Completion time distribution for committed transactions (seconds).

20

40

60

80

100

120

140

50 100 150 200 250 300 350 400 450 500

T
ra

ns
ac

tio
ns

/s
ec

on
d,

 a
nd

 9
0%

 r
ec

id
en

ce
 ti

m
e 

lim
it 

(0
.1

 s
ec

 u
ni

ts
)

Running time (minutes)

Effect of cleanup on performance (MPL=100, db size 120 tps)

Transactions/second
90% recidence time limit (0.1 second units)

Cleanup thread starts

Figure 6: Performance as a function of the time the system has been runningafter the database was created. Performance degrades slightly when the cleanupthread starts. 14



features for industrial-strength database systems (although the prototype isnot up to that level yet). Balancing this with the e�ort expended on researchand development of log-based databases compared to the almost nonexistentresearch on shadow paging, shadow paging o�ers an interesting alternative forfuture databases.Shadow paging sometimes behaves di�erently from log-based systems. Notall benchmark and research results from log-based systems are applicable toshadow paging. Media recovery, index management, dumping, and two-phasecommit are all distinctively di�erent.There is no single shadow paging algorithm, just as there is no single log-based algorithm. Four published variants were mentioned in the introduction,and these only refer to the single-transaction-at-a-time layer of the system.Many more alternatives exist on the higher levels of the system. One must becareful not to condemn all alternatives (with strikingly di�erent performancepro�les) on the basis of just one or a few alternatives.AcknowledgementsTero Kivinen, Heikki Suonsivu, and the author built the �rst prototype usingthese ideas, and several other people (Johannes Helander, Sampo Kellom�aki,Kenneth Oksanen, Kengatharan Sivalingam, and Eljas Soisalon-Soininen) haveparticipated in the development of the current prototype and the algorithms init. The project was supported by TEKES (Finnish Technology DevelopmentCentre), Academy of Finland, Nokia Telecommunications, Sun Microsystems,Solid Information Systems, and New Generation Software (NGS).References[1] M. H. Eich. A classi�cation and comparison of main memory databaserecovery techniques. In Data Engineering, pages 332{339, 1987.[2] J. Gray. The Benchmark Handbook. Morgan Kaufmann, second edition,1993.[3] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu,and I. Traiger. The recovery manager of the System R database manager.Computing Surveys, 13(2):223{243, 1981.[4] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.Morgan Kaufmann, 1993.[5] J. M. Kent. Performance and Implementation Issues in Database CrashRecovery. PhD thesis, Princeton University, 1985.[6] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed datastorage system. Technical report, Xerox Palo Alto Research Center, April1979. 15



[7] R. A. Lorie. Physical integrity in a large segmented database. ACM Tran-sactions on Database Systems, 2(1):91{104, 1977.[8] C. U. Orji and J. A. Solworth. Doubly distorted mirrors. In ACM SIG-MOD, pages 307{316, 1993.[9] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: A case forlog-structured �le systems. ACM Operating Systems Review, 23(1):11{28,1989.[10] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arraysof inexpensive disks (RAID). In ACM SIGMOD, pages 109{116, 1988.[11] M. Rosenblum. The Design and Implementation of a Log-Structured FileSystem. Kluwer, 1995.[12] M. Rosenblum and J. K. Ousterhout. The design and implementation ofa log-structured �le system. In ACM Symposium on Operating SystemsPrinciples, pages 1{15, 1991.[13] A. J. Smith. Cache memories. Computing Surveys, 14(3):473{530, 1982.[14] E. Soisalon-Soininen and T. Yl�onen. Partial strictness in two-phase locking.In Proc. International Conference on Database Theory, number 893 inLecture Notes in Computer Science, pages 139{147. Springer-Verlag, 1995.[15] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The design ofXPRS. In Very Large Data Bases, pages 318{330, 1988.[16] T. Yl�onen. Shadow Paging Is Feasible. Licentiate's thesis, Department ofComputer Science, Helsinki University of Technology, 1994. Available onWWW as http://www.cs.hut.�/~ylo/techreports/lisuri.ps.

16


