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Abstract

Shadow paging has a number of desirable properties, of which snap-

shots are discussed in this paper. It is possible to take a transaction-

consistent snapshot of a database in a few microseconds. This can be

used to execute arbitrary read-only transactions with full consistency

without any locking and only minimal overhead. A related application

is dumping the database; it is shown that the page table allows very

e�cient multi-level incremental dumping of the database without dis-

turbing normal transaction processing. Algorithms are given to solve

the associated problems. Modi�cation of snapshots is also discussed;

this may turn out to have some interesting applications.

1 Introduction

Traditionally, shadow paging has been considered to have poor performance

and to be unsuitable for large multi-user systems [3, 7, 11, 12]. However,

memory sizes have increased due to technological development, and the en-

tire page table of even a large database can now be kept in main memory.

This has removed the most important performance problem. Kent [11, 12]

has shown how to use shadow paging e�ciently in a multi-user environ-

ment; however, log-based systems were still found to perform better in most

applications.
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In [25] it was shown that the page table can be used to make all writes

sequential. This can make the writes ten or even a hundred times faster.

Depending on the application, the overall system performance may be im-

proved by a factor of two, and in some cases by a factor of ten. A clustering

method was also presented which can be used together with the write opti-

mizations.

Shadow paging has been criticized for not supporting record-level lock-

ing, two-phase commit, and partial rollbacks [18]. It is widely believed

that some kind of logging is necessary to use shadow paging e�ciently in

a multi-user environment. The variant used in this paper does not require

any logging, and the implementation of �ne-granularity locking is described

in section 2.2 [24, 25]. Two-phase commit has been discussed in [24]; the

algorithms can be generalized to work with �ne-granularity locking. Partial

rollbacks can also be implemented (to be described in a future paper).

Shadow paging can be used to take transaction-consistent snapshots of

the entire database. Taking a transaction-consistent snapshot requires only

a few microseconds independent of the database size. Snapshots can be used

to execute arbitrary read-only transactions without requiring any synchro-

nization with other transactions. They can also be used to take backup

copies of the database without disturbing normal transaction processing.

Multi-level incremental dumping can be implemented with a slight modi�-

cation to the basic scheme.

There are a number of problems associated with the implementation

of snapshots; they include determining when pages can be freed (to avoid

garbage collection), handling dropping of snapshots e�ciently, taking a

snapshot of just a part of the database, storing a snapshot permanently

in the database, and allowing modi�cation of snapshots without compro-

mising performance. Multi-level incremental dumping also has its own set

of problems.

Section 2 gives an overview of concurrent shadow paging, the write op-

timizations, and the extension to �ne-granularity locking. The shadow pag-

ing variant used here is somewhat di�erent from most of the shadow pag-

ing schemes in the literature. A more detailed description can be found

in [24, 25]. Snapshots are discussed in section 3 and their applications in

section 4.
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2 Concurrent Shadow Paging

The shadow paging algorithm described here di�ers from most of the earlier

algorithms in the literature [7, 16, 23], but is quite similar to the algorithm

given in [12]. The ideas about sequential writes and �ne granularity locking

are from [24, 25].

The database consists of a number of disk blocks organized as pages.

Each page can hold a �xed number of bytes, and is identi�ed by a number

from which its address on disk can be computed. These pages will be called

physical because they have a direct representation on disk.

The levels of the database system above the transaction manager also see

the database as a collection of numbered pages. These will be called logical

pages to distinguish them from physical pages. High level data structures,

such as those used to implement tables, only refer to logical pages. The rela-

tion between logical pages and physical pages is hidden from the higher lev-

els, and is implementation dependent. In most log-based databases, there is

a �xed one-to-one correspondence between logical and physical pages. With

shadow paging, however, the mapping is not �xed but instead continually

changes as the database is modi�ed.

The mapping between logical and physical pages is maintained using a

page table. Conceptually it is an array of physical page numbers indexed by

the logical page number. There is always a valid page table in nonvolatile

storage on disk.

Earlier implementations stored the page table in a �xed location in stable

storage, and used logs and bitmaps to implement atomic modi�cations to the

page table [7, 16]. This makes the implementation of concurrent transactions

di�cult and requires the use of logs on page table pages. The implementors

of System R concluded that the use of this method for large �les was a

mistake. In many textbooks this algorithm is the only description of shadow

paging.

Another implementation was to use intention lists [3, 14, 17]. The idea

was to store the changes made by each transaction in a per-transaction in-

cremental page table. At commit time, the incremental page table is �rst

written to stable storage as a precommit record, and only then are changes

made to the actual page table. If the system crashes in the middle of updat-

ing the page table, the precommit record can be used to redo the changes.

In a detailed study this method was found to perform very poorly for small

transactions with a random access pattern [3].

A third alternative is to have the page table itself in shadowed storage
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Figure 1: The shadow paging �le structure.

[12]. With this method, the database has a page table pointer in a �xed

location in stable storage. It contains the address of the page table on disk.

When a transaction modi�es the database, it constructs a new page table

(without modifying any of the existing page table pages), writes the new

page table to disk, and commits by atomically writing the address of the

new page table to the page table pointer. The page table can be implemented

as a tree-like structure (�gure 1), and only the modi�ed portions of the page

table are rebuilt. This method is assumed throughout this paper.

Concurrent transactions are implemented by having a per-transaction

incremental page table which is used to store the changes made by the

transaction. The incremental page table is conceptually a list of tuples

hL; P

old

; P

new

i, where L is the logical page number, P

old

is the old physical

page number, and P

new

is the new physical page number. In terms of [12]

P

old

corresponds to the global version of the page and P

new

corresponds to

the local version of the page.

Two-phase locking on logical pages is used for concurrency control. To

read a page, the transaction �rst acquires a shared lock on the logical page.

It then looks for a corresponding entry in its incremental page table, and if

not found, maps the page using the global page table. To write a page, the

transaction obtains an exclusive lock on the logical page. It then checks if
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it already has an entry for the page in its incremental page table. If so, it

uses the already-existing local version of the page. If not, it creates a copy

of the page, and adds a corresponding entry to its incremental page table.

(Fine-granularity locking is discussed in section 2.2.)

Since a transaction must have an exclusive lock before it can modify a

page, only one transaction can have a local version of any given logical page,

and there can be no con
icts between the incremental page tables of di�erent

transactions. This means that it is possible to install the modi�cations of

several transactions into the global page table at once, reducing the overhead

due to constructing new page tables. This can be implemented by queuing all

transactions which have requested to be committed, and having a separate

process periodically (a few times a second or as soon as the previous commit

batch has completed) take all transactions in the queue and install their

modi�cations (local versions) to the global page table. This is called commit

batching [8]. The basic idea is to combine many small transactions into a

larger page table level transaction.

Incremental page tables and commit batching signi�cantly decrease the

cost of updating the page table. The cost of each page table update is divided

among several transactions, and the per-transaction overhead decreases as

the multiprocessing level increases. Also, since the page table is implemented

as a tree of pages, only those parts of the page table that are actually

modi�ed (and their parent nodes) need to be rewritten; other parts of the

page table can be shared with previous versions.

No garbage collection is needed with this method. After a transaction

has committed, it can free the \old" versions of the pages (including page

table pages) that it has modi�ed. If a transaction needs to be aborted, all

that has to be done is to free the \new" versions in its incremental page

table. No modi�cations need to be made to the global database in this case.

The free list of physical pages can either be extracted from the page

table on disk at startup time, or be stored on disk at every commit. It is

possible to compute the permanent free list and write it to disk at every

commit batch. However, the CPU overhead usually makes it undesirable to

do that. In most applications extracting the free list from the page table at

startup time is preferable [12], and this approach is assumed in the rest of

this paper.
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2.1 Write Optimizations

The page table gives the system the freedom to choose where to write each

page. It is possible to defer the assignment of actual physical page numbers

until commit time [25]. The system can then choose to allocate contiguous

disk pages for all pages written by a transaction or by all transactions in a

commit batch. This can be used to turn writes sequential. A description of

the implementation and the analysis have been given in [25]. A clustering

algorithm using variable-size pages which works with the write optimization

was also described and analyzed.

The write optimizations reduce the I/O caused by writes by about a

factor of ten, and result in very signi�cant speedups in on-line transaction

processing and other write-intensive applications. Also, since the relative

proportion of writes decreases, the potential gains from caching increase.

2.2 Fine-Granularity Locking

Fine-granularity locking is implemented by storing the changes made by a

transaction in a separate per-transaction data structure, and installing the

changes to the data pages as the �rst thing in processing a commit batch

[24]. Fine-granularity two-phase locking is used for concurrency control.

Modi�cations and locks can be either on absolute byte ranges or on byte

ranges with respect to an object identi�er. The changes as well as locks

refer only to logical page numbers, and it is possible that the corresponding

physical page changes while the transaction is active. However, the locking

guarantees that the parts of the page which the transaction has modi�ed

will not be touched by other transactions.

Very large transactions are handled by switching to page-level locking

after a transaction has made a certain number of modi�cations. Large trans-

actions often access an entire table and may hold a table-level lock. In most

cases switching to page-level locking for large transactions will not signif-

icantly reduce concurrency but will instead reduce the locking overhead.

Also, installing the �ne-granularity changes of a very large transaction at

commit time would intolerably lengthen the time needed for processing the

commit batch and would delay other transaction processing.

The incremental page table is not used for transactions which only do

�ne-granularity locking. Instead, a similar data structure is created when

new physical pages are allocated while processing the commit batch. The

�ne-granularity changes of many transactions are combined and executed as
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if they were made by a single transaction.

It is possible that a transaction does both �ne-granularity modi�cations

and full-page modi�cations. The full-page modi�cations will be recorded

in the incremental page table and the �ne-granularity changes in their own

data structure.

3 Snapshots

A snapshot is a transaction-consistent copy of the database [1]. Shadow

paging allows taking transaction-consistent snapshots of the entire database

by saving the address of the page table and preventing freeing of pages

referenced from the snapshot.

There is not much previous work on snapshots with shadow paging. In

System R [7] shadows were used for checkpointing, but their approach does

not allow more general snapshots. Other work on snapshots [1, 10, 15] in-

volves actually copying the data or using the log to access old versions; in

those approaches the creation, deletion, refreshing, or accessing of snap-

shots is very expensive. Object-level versions are commonly used in object-

oriented databases, and a snapshot-like interpretation for them has been

discussed in [6]. The approach presented here is, to the authors' best knowl-

edge, completely new.

The problems in supporting snapshots e�ciently include

1. determining when a page can be freed (i.e., when is the last reference

to the page removed),

2. determining which locations to check for modi�ed pages when drop-

ping a snapshot without scanning the entire page table,

3. how to implement partial snapshots (e.g., just one table or index),

4. how to support modi�cation of snapshots, and

5. how to make snapshots permanent.

3.1 Freeing Physical Pages

The primary problem with snapshots is determining when a page can be

freed. It turns out that the properties of shadow paging allow a very e�cient

implementation. From within a single snapshot a physical page can be
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Figure 2: Snapshots represent consistent database states as of some time in

the past.

referenced only once (multiple references to the same physical page from

several logical pages are not allowed). It is also not possible to move a

physical page from one logical location in the database to another logical

location. This means that if a page which is referenced from one snapshot is

also referenced from some other snapshot, that reference must be from the

same logical location. For data pages this means the same logical page; for

page table pages this means the page table pages mapping the same logical

pages.

All active snapshots in the system form a chain in chronological order

(�gure 2). The immediate predecessor of a snapshot in this chain will be

called the parent of the snapshot, and the immediate successor will be called

a child of the snapshot. Only the current database state can be modi�ed.

If a snapshot has a reference to a page, the page must either also occur in

the parent snapshot, or it must have been created during the time interval

between taking the parent snapshot and the current snapshot. Thus, to

determine whether a page can be freed, it is only necessary to check the

immediate parent (if it exists).

This algorithm is used to free the old versions of data and page table

pages after a commit batch has committed successfully. The modi�ed pages

of an aborted transaction can always be freed without any checking, because

they have not been made visible to other transactions.

The system is allowed to drop any snapshot which has no references from

applications, except permanent snapshots (section 3.5) and snapshots which

serve as forking points in the version hierarchy (section 3.4). Snapshots

should be dropped as early as possible to avoid unnecessary use of disk

space.

3.2 Dropping Snapshots

It is possible that a logical page is modi�ed while the same physical page

is being referenced from a snapshot. Such a page cannot be freed when

the modi�cation is done, but must be freed when the snapshot is dropped

(unless some other snapshot has a reference to the page). When dropping a
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snapshot, care must be taken to free any such pages.

It is possible to scan all pages in the snapshot and use the algorithms from

the previous section to determine whether each page can be freed (checking

also the immediate child), but in practice this would be too costly.

There are several alternatives to avoid checking all pages. One possibility

is to keep a record of all locations that have changed between two snapshots.

Another solution is to use timestamps in the page table.

3.2.1 Recording Changed Locations

A page can di�er in a snapshot and its parent (note that the current database

state is also seen as a snapshot in this context) only if it has been modi�ed

during the interval between taking the snapshots. It is possible to record

in the chronological chain of snapshots the set of logical pages that have

changed between two consecutive snapshots. The change sets can be used

to e�ciently determine which pages need to be freed. The method directly

gives the set of pages which are to be freed; no checking is required.

There are three things to consider here: changing the current database

state, taking a new snapshot, and dropping a snapshot. The snapshots

are assumed to form a chain in chronological order (�gure 2). Associated

with each link in the chain is a set of logical page numbers that had been

modi�ed (created, deleted, or updated) between taking the two snapshots.

For simplicity of description, an imaginary snapshot is assumed at in�nity in

the past and at in�nity in the future. The sets associated with the imaginary

links from the in�nite past and the in�nite future contain all possible logical

page numbers.

Whenever any change is made to the current database state, the number

of the logical page number which was changed is added to the set which

is associated with the link between the newest snapshot and the current

database state.

A new snapshot can be added in the chain immediately on the \left"

side of the current database state. E�ectively the link between the previous

newest snapshot and the current state becomes the link between the previous

newest snapshot and the new snapshot, and it retains its change set. A new

link is created between the new snapshot and the current state; the change

set of this link is initially empty.

Pages may need to be freed when dropping snapshots. A page was inher-

ited from the parent snapshot if it was not changed between the snapshots

(it is not in the change set associated with the link). Correspondingly, it has
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been inherited to the child if it has not been changed between the snapshot

and the child. The page has no other references if it is inherited neither from

the parent nor to the child. Thus, the pages that can be freed are those in

the intersection of the \left" and the \right" change sets of the snapshot,

and any page table pages used for mapping those pages. If the snapshots

have any physical pages associated with them that do not have correspond-

ing logical pages (such as the pages used to store the change sets), those

physical pages must be handled separately.

It is possible to reformulate the checking algorithm in section 3.1 in terms

of the change sets (remember that only the current state can be modi�ed):

the old physical page can be freed if the corresponding logical page is already

in the \left" change set of the current state. The corresponding page table

pages, however, are a more di�cult issue. If another logical page has already

been modi�ed, some of the page table pages have been created after creating

the current snapshot and thus should be freed even though the data page

itself should not be freed.

There are some implementation problems with this approach. One issue

is maintaining the change set. If it is in main memory, it can grow rather

big. If the snapshots are permanent (section 3.5), the change sets must also

be permanent and thus saved to disk at every commit batch. The algorithm

in the previous paragraph expects to use the change set as of before the

current commit batch, but is called after the commit batch. The change

set can get rather large in some applications, and change sets need to be

merged when dropping snapshots. It may be rather di�cult to use change

sets straightforwardly in an actual system.

3.2.2 Timestamps in Page Table Entries

A suprisingly simple solution is to store a timestamp of the last modi�cation

in every page table entry (including the entries in higher-level page table

pages and the page table pointer, which only point to other page table

pages). The timestamp is the sequence number of the last commit batch

which has modi�ed the entry. The sequence number of the last transaction

included in each snapshot is carried with the snapshot. It is now possible

to reconstruct the change sets by traversing the page table; the change set

includes those logical pages that have changed after the timestamp of the

previous snapshot. The timestamp of the imaginary \in�nite past" snapshot

is negative in�nity, and the timestamp of the \in�nite future" snapshot is

positive in�nity.
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There is no need to actually reconstruct the change sets. A changed

page can be freed if its old timestamp was newer than the timestamp of the

previous snapshot. There are no problems with page table pages: they also

have timestamps (either in the higher-level page table entries pointing to

them or in the page table pointer), and it can thus be directly determined

whether the page table page is newer than the newest snapshot. Taking a

new snapshot is trivial; the current timestamp is just recorded in the new

snapshot and the new snapshot is added to the chronological chain.

Dropping a snapshot is somewhat more complicated. It is necessary to

traverse the page table of the snapshot being dropped and the page table of

the next snapshot in parallel (synchronously with respect to the logical page

number { it is important to notice that the page tables may be of di�erent

depth). The traversing is pruned at every level using the timestamps of the

page table pages: there is no point in traversing a page table page which

has not changed because such a page cannot contain any changed pages.

Only those page table pages which have changed both between the previous

snapshot and the snapshot being dropped and between the snapshot being

dropped and the next snapshot are visited. All pages (both data and page

table) which have changed during both intervals must be freed. The snap-

shot is then removed from the chain of snapshots; no changes need to be

made to any timestamps.

Timestamps in page table entries will about double the size of the page

table. If snapshots are used heavily, this may well be a reasonable price to

pay; we will also see in section 4.2 that the timestamps will be very useful

for on-the-
y multi-level incremental dumping.

3.3 Partial Snapshots

It is sometimes desirable to take a snapshot of only a part of the database,

e.g., a single table or a single index. This is possible if an allocation domain

identi�er is included in the page table entry. All data in the system is

associated with an allocation domain. Each table and index can be placed

in a separate allocation domain. It is then possible to take a snapshot of

just that domain (identi�ed by its number which is stored in the page table

entries).

In the implementation, the identi�ers of the allocation domains which are

included in the snapshot are stored in the snapshot header data structure.

The domain is checked when accessing a page, and an error is returned if a

page which is not included in the snapshot is accessed.
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Special care is needed in checking when a page can be freed and when

dropping snapshots. Those pages which are not included in a partial snap-

shot are transparent with respect to the algorithms in sections 3.1 and 3.2,

and further parent or child snapshots may need to be referenced. In other

words, if the parent (or child) of the snapshot being dropped (or the snap-

shot where a page is modi�ed) is a partial snapshot, and the page in question

is not included in the partial snapshot, it is necessary to get the timestamp

from the parent (or child) of the partial snapshot, repeating until a snapshot

including the page is found, or the end of the chain of snapshots is reached.

Partial snapshots are primarily an optimization for specialized uses. It

is always possible to use a full snapshot instead of a partial snapshot. The

motivation for using partial snapshots is to minimize the amount of disk

space that is reserved by the snapshot to those pages that are actually

accessed using the snapshot; for long-lived snapshots the di�erence can be

signi�cant.

Partial snapshots have applications for example in index management;

they could also be used when taking a backup of just one table.

3.4 Modifying Snapshots

It is possible to modify a snapshot. The snapshot behaves like a copy-on-

write copy of the database. From the user's point of view, each snapshot is

an independent copy of the database. It is possible to make modi�cations

to the copy, and these modi�cations will not a�ect other copies. No syn-

chronization of transactions is required between two copies, and the copies

diverge as more modi�cations are made.

Such modi�able snapshots are called versions of the database. They

are di�erent from ordinary object-level versions in that they are global,

and object-level versioning may be used together with database versions if

desired. A similar concept has been used in [6] for version identi�cation

in the context of object-oriented databases; however, their implementation

is entirely di�erent. It is possible to implement their ideas very e�ciently

using modi�able snapshots, although some minor modi�cations are needed

to the basic scheme described here and in section 3.5.

The versions and snapshots of a database form a tree (�gure 3) as op-

posed to the linear chain of snapshots (�gure 2). Only snapshots with no

children can be modi�ed; if a snapshot with children is to be modi�ed, a

new snapshot can be taken and that snapshot modi�ed.

The tree can be seen as a collection of chains of snapshots, where the
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Figure 3: Versions of a database form a tree. Implicit snapshots are retained

of all forking points.

older ends of the chains have nodes in common. The same algorithms from

sections 3.1 and 3.2 can be used. Partial snapshots cannot serve as forking

points in the tree.

It is not permissible to drop a snapshot which has more than one child

(a forking point in the tree). If dropping such snapshots were allowed, the

assumption that other references must be either from immediate parent or

immediate child would no longer hold, and the algorithms described in this

paper would not work. A forking point can be dropped when it no longer

has more than one child and has no other references.

3.4.1 The Logical Free List

Since the free list of logical page numbers in each snapshot is independent

of other snapshots (changes to one list are not re
ected in other copies),

some kind of a copy needs to be done when taking a snapshot. However,

in most cases the snapshot will not be modi�ed or only a small fraction

of it will be modi�ed. The logical free list, on the other hand, can be

quite large. A normal list requires O(N) time to copy the list, which would

soon begin to dominate the snapshot creation time. If garbage collection

is available, the problem is trivial (just copy the pointer and never modify

the nodes). However, a di�erent mechanism must be used in systems with

explicit memory management, and most database system implementations

fall in this category.

One possible solution is lazy reference counting. Four operations are

done on the logical free list: get (returns a number from the list), put
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Figure 4: The logical free list data structure and its reference counts in the

presence of multiple snapshots.

(adds a number to the list), copy (returns a copy of the list), and free

(frees the entire list). All these operations take O(1) time, except for free

which has a linear worst case.

Each node has a reference count which indicates how many direct point-

ers there are to the node. A pointer may be either from another node or from

a snapshot. The data structure is partially shared between copies (�gure 4).

A node can be freed when its reference count becomes zero.

Get decrements the reference count of the current node and moves the

current node pointer to point to the next node. If the reference count of

the old current node reaches zero, it is freed; otherwise the reference count

of the new current node is increased (note that it is not increased if the

previous node was freed). The page number from the old current node is

returned.

Put creates a new node containing the given page number. The next

pointer of the node will be set to point to the old current node, and the new

node will be made the current node. The reference count of the new node

is initialized to one.

Copy increments the reference count of the current node. The returned

new list is actually the same as the old list (but they have independent

current pointers).
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Free decrements the reference count of the current node. If the refer-

ence count reaches zero, the node is freed and the next node is made the

current node. This is continued until the reference count is not zero after

decrementing, or the end of the list is reached.

3.4.2 Other Main Memory Data Structures

There may also be other main memory data structures associated with a

snapshot. They may require special handling to allow modi�cation of snap-

shots. Small data structures can simply be copied; larger data structures

must be handled similarly to the logical free list.

3.5 Permanent Snapshots and Versions

There are two basic approaches to make several snapshots or versions per-

manent in the database. In the �rst approach each snapshot or version is

an independent database, and a single transaction can modify only a single

version without resorting to distributed transaction processing algorithms.

Each version has its own page table pointer and transactions can be commit-

ted independently to each version. A master pointer is used to contain the

addresses of the page table pointers; both the master pointer and the page

table pointers are in stable storage. This �le structure is illustrated in �gure

5. If there are very many permanent snapshots, the master pointer may

have extension pages which are stored in normal shadowed storage. Cre-

ation and deletion of versions are atomic operations which are asynchronous

with respect to transaction processing. The rest of this section primarily

considers this approach.

In the second approach the versions are more like objects in a database,

and it is possible to access multiple versions in a single transaction (this

corresponds to the de�nition of the database version concept in [6]). There

is only one atomically updatable page table pointer, but it may contain

several page table addresses. Creation and deletion of versions are normal

operations that are done inside transactions. (It is also possible to use a

combination of these two approaches: there can be a master pointer which

points to a number of page table pointers, each of which contains one or

more page table addresses.)

All snapshots are initially temporary. They become permanent when

a permanent reference is created, usually by giving the snapshot a name.

At that time, all of its pages must be forced to disk (if the snapshot has
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Figure 5: Shadow paging �le structure with a master pointer and multiple

versions.

been modi�ed after it was taken, some of the modi�cations may not be on

disk since no 
ushing is needed when executing transactions to a temporary

snapshot), and a page table pointer is allocated for the snapshot. When all

pages and the page table pointer have been 
ushed to disk, the address of

the page table pointer is atomically inserted to the master pointer. With

the second approach, a reference is created when the address of the page

table is stored to the page table as part of commit processing, and there is

no separate page table pointer.

It is important to guarantee that the hierarchical relationships of per-

manent snapshots is retained over crashes. In particular, if two permanent

snapshots have a common ancestor, that ancestor must implicitly be per-

manent.

It is possible that a snapshot is on the path between two snapshots which

must be permanent, there is an application reference to the snapshot, but

the snapshot itself need not be permanent. Such snapshots should no longer

exist after recovery. This can be implemented either by checking for such

snapshots at recovery time or by storing only the truly permanent hierarchy

on disk. The former alternative requires a little extra recovery code; the

latter alternative requires maintaining two overlapping snapshot hierarchies
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(the temporary hierharchy in main memory and the permanent hierarchy

on disk). Both alternatives are feasible.

To make a permanent snapshot temporary, the pointer to the page table

pointer must be removed atomically from the master pointer. After that, the

snapshot is no longer permanent. The page table pointer is freed; there is no

point in 
ushing changes to a temporary snapshot to disk. In many cases the

snapshot is freed immediately after making it temporary (only temporary

snapshots can be freed). The system must ensure that snapshots which

are required to maintain the permanent snapshot hierarchy (forking points)

are not made temporary, but this need not be visible to the application

programs.

4 Applications

4.1 Read-Only Transactions

Any read-only transaction can be implemented by taking a snapshot of the

entire database, reading from the snapshot, and releasing the snapshot at

the end of the transaction. No locking or any interaction with other execut-

ing transactions is needed, yet the read-only transaction sees a consistent

database state. The read-only transaction is e�ectively serialized to the

moment when the snapshot was taken. (This is one way of implementing

multi-version concurrency control [4, 5]; read-only transactions in that con-

text have been discussed e.g. in [2].)

This solves the problems of large or long-duration read-only transactions

that are di�cult to solve in conventional log-based databases. Since the

transaction reads from a snapshot, no synchronization is needed with other

transactions and thus there will be no con
icts with update transactions.

4.2 On-The-Fly Multi-Level Incremental Dumping

One use of snapshots is to implement dumping of the database while transac-

tion processing is active. The backup process can be seen as a large read-only

transaction, and can be implemented by taking a snapshot at the start of

the dump, reading the logical database using the snapshot, and dropping

the snapshot at the end of the dump. Only the logical database is dumped;

unused free pages or page table pages are not dumped.

Incremental dumping (that is, dumping of the changes made after the

previous dump) can be implemented by including the timestamp of the last
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modi�cation in the page table entries (see section 3.2.2). The timestamp

of the snapshot is recorded whenever a dump is taken. When taking an

incremental dump, the timestamps of all page table entries are compared

against the timestamp of the previous dump, and only pages modi�ed after

the previous dump are dumped. Pages which have a null page number

in their page table entry have been deleted; those pages are naturally not

dumped but instead the fact that the page has been freed since the previous

dump is recorded.

Multi-level incremental dumping allows several levels of dumps, e.g., a

weekly, a daily, and an hourly dump. The idea is to dump the changes made

since the last higher-level dump. This can be implemented by recording the

timestamp of the last dump of each level, and dumping only pages that have

been modi�ed after the desired timestamp.

Since the dump only reads the page table (which is usually in main

memory) and the pages which are actually dumped, incremental dumping is

very e�cient. It is also possible to read directly from the disk while taking

a dump, bypassing the normal disk cache. This may sometimes be desirable

to avoid overhead and contention of the cache [19]. Since the physical pages

referenced from the snapshot do not change, reading directly from the disk

is trivial and does not change the algorithms in any way.

Many earlier algorithms have been presented for on-the-
y dumping of

log-based databases [9, 13, 19, 20, 21, 22]. Most of the algorithms are based

on taking a fuzzy dump of the database and dumping the log records of

transactions which were active during the dump. [20] describes an algorithm

which can be used to directly take a consistent dump using locking (and

correspondingly, possibly causing some transactions to be aborted; it should

also be noted that [20] uses the term \incremental" in a di�erent sense).

Some of the earlier algorithms can support incremental dumping by hav-

ing a bit in the data pages which is set whenever the page is modi�ed [9].

In [19] the bit was stored in the space map pages of the database. Both of

these methods can be extended to incremental dumping by storing as many

bits as there are dump levels. Log sequence numbers (LSNs) can be used in

a similar way to do incremental dumping. Most of the algorithms require

scanning the entire database even for incremental dumping; [19] is a notable

exception.

The authors are not aware of any previous on-the-
y dumping algorithms

for shadow paging.
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4.3 Modi�able snapshots

Multiple permanent versions could be useful in a number of applications. Ex-

amples include large design databases, where several design directions could

be considered simultaneously. Another application could be asking \what

if" questions in a large database without a�ecting the original database.

In large knowledge bases, multiple versions could be used to implement

new search algorithms. In certain fault-tolerant computing environments it

might be possible to see both the �le system and the state of the program

as a shadow paging database. The possibilities for interesting applications

are numerous and largely unexplored. It has not been possible to support

multiple independently updatable database versions e�ciently with existing

databases.

5 Conclusion

This paper began with a description of concurrent shadow paging, write op-

timizations, and the extension to �ne-granularity locking. Snapshots were

the main topic of this paper; it was shown that transaction-consistent snap-

shots of the entire database can be taken very e�ciently. Solutions were

presented to the problems in supporting snapshots. Modi�cation of snap-

shots was also discussed, and algorithms were given for supporting it. No

garbage collection is needed.

Snapshots have many potential applications. Arbitrary read-only trans-

actions can be run with full consistency and without any interaction with

other transactions. On-the-
y multi-level incremental dumping can be done

very e�ciently and without disturbing normal transaction processing. No

locking is needed for either read-only transactions or for dumping.

The ideas in this paper are being implemented, and the system has run

its �rst transactions. However, the work is still underway and it is too early

to run any benchmarks.

Topics for current and future research include early releasing of locks [24],

two-phase commit in distributed databases [24], automatic I/O load balanc-

ing [24], nested transactions, algorithms for e�cient variable-length object

allocation, index management, and fault-tolerant embedded databases.
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