
Concurrent Shadow Paging: Fine-Granularity

Locking with Support for Extended Lock Modes

and Early Releasing of Locks

�

Tatu Yl�onen Eljas Soisalon-Soininen Tero Kivinen

Laboratory of Information Processing Science

Helsinki University of Technology, FIN-02150 Espoo, Finland

E-mail: ylo@cs.hut.�

Abstract

This paper describes in detail how to implement multiple concur-

rent transactions with �ne-granularity locking in a database system

using shadow paging for crash recovery. The basic idea is to store the

updates separately until the transaction requests to commit, at which

time the changes are patched to the global database. Commit batching

is used to achieve reasonable performance; its gains are much higher

with shadow paging than with log-based systems. Due to early re-

leasing of locks, locking durations do not increase because of commit

batching.

1 Introduction

Traditionally, shadow paging has been considered to have poor performance

and to be unsuitable for large multi-user systems [1, 3, 5, 6]. However,

Kent [5, 6] has shown how to use shadow paging e�ciently in a multi-

user environment using page-level locking (but found it to have inferior

performance compared to log-based approaches). Since then, main memory

sizes have increased due to technological development, and the entire page

�

This research was supported in part by TEKES grant 4067/93, Academy of Finland

grant 7410, and by Sun Microsystems Computer Corporation. The views and opinions

presented in this paper are those of the authors and do not necessarily represent the views

or opinions of any of the abovementioned organizations.

1

table of even a large database can now be kept in main memory. This has

removed the most important performance problem.

In [16] it was shown that the page table can be used to make all writes

sequential. This improves the overall system performance very signi�cantly.

A clustering method was also presented which can be used with the write

optimizations.

Shadow paging has been criticized for not supporting record-level lock-

ing, two-phase commit, and partial rollbacks [11]. It is widely believed that

some kind of logging is necessary to use shadow paging in a multi-user en-

vironment. The variant used in this work does not require any logging.

The implementation of �ne-granularity locking is the topic of this paper; a

sketch of the solution has been given in [15, 17]. Two-phase commit has

been discussed in [15]; the algorithms can be generalized to work with �ne-

granularity locking. Partial rollbacks can be replaced by nested transactions

(to be described in a future paper).

Many of the other requirements for an industrial-strength database sys-

tem can also be satis�ed with shadow paging. For example, it is possible

to run arbitrary read-only transactions with full consistency without any

interference with other transactions, and it is easy to support on-the-y

multi-level incremental dumping [17]. In general, it is possible to take a

transaction-consistent snapshot of the entire database in about a millisec-

ond, and such snapshots can also be modi�ed and made permanent in the

database. This permits certain applications and algorithms which have not

been possible with existing database systems.

The structure of this paper is as follows. Section 2 gives an overview of

the variant of shadow paging assumed in this work. Section 3 describes the

ideas behind �nd-granularity locking. Section 4 describes the current im-

plementation of the algorithms and discusses the interactions of the various

optimizations. Section 5 discusses some of the open questions and potential

problems remaining with shadow paging. Section 6 concludes the paper.

2 Concurrent Shadow Paging

The shadow paging algorithm described here di�ers from most of the earlier

algorithms in the literature [3, 9, 14], but is similar to the algorithm given

in [6]. This section describes the page-oriented version of the algorithm; it

is extended to �ne-granularity locking in Section 3.

The database consists of a number of disk blocks organized as pages.

2

Each page can hold a �xed number of bytes, and is identi�ed by a number

from which its address on disk can be computed. These pages will be called

physical because they have a direct representation on disk.

The levels of the database system above the transaction manager also see

the database as a collection of numbered pages. These will be called logical

pages to distinguish them from physical pages. High level data structures,

such as those used to implement tables or indexes, only refer to logical pages.

The mapping between logical and physical pages is maintained using a

page table. Conceptually it is an array of physical page numbers indexed by

the logical page number. There is always a valid page table in nonvolatile

storage on disk.

Earlier implementations stored the page table in a �xed location in stable

storage, and used logs and bitmaps to implement atomic modi�cations to the

page table [3, 9]. This makes the implementation of concurrent transactions

di�cult and requires the use of logs on page table pages. The implementors

of System R concluded that the use of this method for large �les was a

mistake. In many textbooks this algorithm is the only description of shadow

paging.

Another implementation was to use intention lists [1, 7, 10]. The idea

was to store the changes made by each transaction in a per-transaction in-

cremental page table. At commit time, the incremental page table is �rst

written to stable storage as a precommit record, and only then are changes

made to the actual page table. If the system crashes in the middle of updat-

ing the page table, the precommit record can be used to redo the changes.

This method has been found to perform very poorly for small transactions

with a random access pattern [1].

A third alternative is to have the page table itself in shadowed storage [6].

With this method, the database has a page table pointer in a �xed location

in stable storage. It contains the address of the page table on disk. When a

transaction modi�es the database, it constructs a new page table (without

modifying any of the existing page table pages), writes the new page table to

disk, and commits by atomically writing the address of the new page table

to the page table pointer. The page table can be implemented as a tree-like

structure (Figure 1), and only the modi�ed parts of the page table need to

be rebuilt at commit. This method is assumed throughout this paper.

The size of the page table is about 0.01 % to 3 % of the size of the

database (16 bytes per page table entry allows two 40 bit physical page

numbers, the other being used for media recovery, a 32-bit bit commit batch

sequence number used as a timestamp, one byte for page size and ags, and

3

Data PagesPage Table Pages

Page Table

Pointer

Figure 1: The shadow paging �le structure.

one byte for allocation information). Typical page sizes are from 512 bytes

to a few kB for frequently updated relational data, and up to 1 MB for blobs

and multimedia data. In many applications the page table �ts entirely in

main memory.

Concurrent transactions can be implemented by having a per-transaction

incremental page table which is used to store the changes made by the

transaction. The incremental page table is conceptually a list of tuples

hL; P

old

; P

new

i, where L is the logical page number, P

old

is the old physical

page number, and P

new

is the new physical page number. In terms of [6]

P

old

corresponds to the global version of the page and P

new

corresponds to

the local version of the page.

Two-phase locking on logical pages is used for concurrency control. To

read a page, the transaction �rst acquires a shared lock on the logical page.

It then looks for a corresponding entry in its incremental page table, and if

not found, maps the page using the global page table. To write a page, the

transaction obtains an exclusive lock on the logical page. It then checks if

it already has an entry for the page in its incremental page table. If so, it

uses the already-existing local version of the page. If not, it creates a copy

of the page, and adds a corresponding entry to its incremental page table.

Since a transaction must have an exclusive lock before it can modify a

4

page, only one transaction can have a local version of any given logical page,

and there can be no conicts between the incremental page tables of di�erent

transactions. This means that it is possible to install the modi�cations of

several transactions into the global page table at once, reducing the overhead

due to constructing new page tables. This can be implemented by queuing all

transactions which have requested to be committed, and having a separate

process periodically (a few times a second or as soon as the previous commit

batch has been completed) take all transactions in the queue and install their

modi�cations (local versions) to the global page table. This is called commit

batching [4, 6]. The basic idea is to combine many small transactions into a

larger page table level transaction.

No garbage collection is needed with this method. After a transaction

has committed, it can free the \old" versions of the pages (including page

table pages) that it has modi�ed. If a transaction needs to be aborted, all

that has to be done is to free the \new" versions in its incremental page

table; no modi�cations need to be made to the global database.

The free list of physical pages can either be extracted from the page

table on disk at startup time, or be computed and written to disk at every

commit batch. Extracting the free list from the page table at startup time

is probably preferable in most applications [6].

2.1 Write Optimizations

The page table gives the system the freedom to choose where to write each

page. It is possible to defer the assignment of actual physical page numbers

until commit time [16] (but the cache is still free to allocate physical pages

at any time, for example if it needs to ush some data to the disk). The

system can allocate nearly contiguous disk pages for all pages written by a

transaction or by all transactions in a commit batch. This can be used to

turn writes sequential. A description of the implementation and an analysis

have been given in [16]. A clustering algorithm using variable-size pages

which works with the write optimizations was also described and analyzed.

The write optimizations reduce the I/O caused by writes by about a

factor of ten compared to writing to �xed locations. This results in signif-

icant speedups in on-line transaction processing and other write-intensive

applications. Also, since the relative cost of writes decreases, the potential

gains from caching increase.

5

2.2 Snapshots, Read-Only Transactions, and On-The-Fly

Multi-Level Incremental Dumping

Since no pages (except for the page table pointer) are ever modi�ed in

shadow paging, it is possible to take a transaction-consistent snapshot of

the entire database by saving the address of the page table and preventing

freeing of pages referenced from the saved page table [17]. It turns out

that there are simple and e�cient algorithms for determining when a page

can be freed in the presence of snapshots. No garbage collection is needed.

Taking and dropping snapshots are very fast operations (of the order of a

millisecond).

Arbitrary read-only transactions can be executed with full consistency

and without any locking by taking a snapshot and reading from the snapshot.

On-the-y multi-level incremental dumping can be implemented by storing

a timestamp of last modi�cation in the page table entries, and dumping

only those pages whose timestamp has changed [17]. It is also possible to

modify a snapshot. Fast modi�able snapshots permit new applications and

algorithms that have not previously been possible.

2.3 Page Table Translation Lookaside Bu�er

Translating a page number through the page table costs several hundred

instructions assuming a bu�er cache lookup can be done in about a hun-

dred instructions. The total overhead for a TPC-B style transaction can be

several thousand instructions.

The translation cost can be reduced dramatically by using a specialized

data structure to cache recently used mappings. One possibility is to use an

array of mappings hL; P i as a hash table (L is a logical page number and

P is the corresponding physical page number). The logical page number is

hashed into the table using the lower bits of the page number (if the size

of the array is a power of two, this can be done with a single bitwise-and

instruction). When a translation from a logical to a physical page number

is needed, the appropriate slot of the table is checked �rst, and if present,

the mapping there is used. Otherwise the translation is done using the page

table, and the mapping is copied to the hash table. Page table modi�cations

also update mappings in the hash table.

This optimization almost eliminates the translation cost for most ac-

cesses. Higher hit rates for the lookaside bu�er can be achieved by using an

N-way set-associative architecture [13].

6

3 Fine-Granularity Locking

It is nontrivial to do �ne-granularity locking with shadow paging. The pri-

mary problem is that if the modi�cations were made to the actual data

pages, and two transactions modi�ed the same page, it would not be pos-

sible to commit or abort the transactions individually (they would have to

be committed or aborted together since there is no way to commit one and

undo the other). If, on the other hand, each transaction created its own

copy of the page, their changes would somehow have be merged at commit

time, requiring extra bookkeeping and overhead. The only feasible approach

thus seems to be to store the changes made by each transaction separately in

a per-transaction data structure, and install the changes to the data pages

only after the transaction has requested to be committed [15].

The changes in main memory do not refer to physical pages. Instead,

logical record identi�ers are used, and the operation to be performed is stored

instead of actual values. This allows commutative increment/decrement-

style operations.

Two-phase locking is used for concurrency control. The changes as well

as locks refer only to logical identi�ers, and it is possible that the object

moves to a di�erent physical page while the transaction is active. However,

locking guarantees that the parts of the database which the transaction has

modi�ed will not be touched by other transactions.

Very large transactions are handled by escalating the locks to table level,

and switching to use immediate page-level updates for that transaction and

table. This is discussed in Section 3.6.

3.1 The Lifetime of a Transaction

For most of its duration a transaction is in the \active" state; all modi�ca-

tions are made in this state. In the active state, the transaction may at any

time request to be aborted or to be committed. After the transaction has

requested to be committed, it can no longer issue any other requests to the

database. For some time the fate of the transaction is undetermined; then

the system either aborts the transaction or commits it. In either case the

result is then reported to higher levels of the system. (See Figure 2.)

In the active phase a transaction must protect all of its actions using ap-

propriate locking. An object must be locked in shared mode before reading

and in exclusive mode before updating.

With shadow paging and �ne-granularity locking, it is normally not per-

7

Allow
patching

Wait for patching
to quiesce

Realize &
build
pagetable Flush

pagetable
Write

pointer

all locks
Release

status
ReturnPatch

changes

request
Commit

Release
shared locksChanges made to local data Waiting for commit

Start End

Commit batch:

Figure 2: The lifetime of a transaction.

missible to modify the actual cache page containing the data being modi-

�ed. Instead, it is necessary to store the changes separately in a suitable

per-transaction data structure. Only if the transaction holds a lock covering

the entire page, can it allocate a local copy of the original data page and

modify the page.

3.2 Commit Processing and Combining Transactions

When a transaction requests to be committed, all of its shared locks can be

released immediately because it is known that the transaction will not do

any more reads or updates.

At some point before a transaction can become permanent, all changes

made by it must be patched to the global database. To avoid anomalies it is

essential that all changes patched to a page are made by transactions that

end up in the same commit batch. The easiest way to maintain this con-

straint is to guarantee that all transactions that have started to patch their

changes end up in the same batch as all other transactions that have started

to patch their changes but have not yet been included in some commit batch.

This essentially means that to start a commit batch, it is necessary to

prevent further transactions from starting to patch their changes, to wait un-

til all transactions currently patching have �nished patching, and to include

all transactions which have patched their changes in the batch. Patching

can continue after the changes made in the commit batch have been entered

into the page table; however, there is no need to wait until the page table

or data pages have been ushed to disk. This means that transactions that

go in the next batch (at least in their patching phase) can see data which

has not yet been committed; however, due to the restriction on commit or-

der (see above) it is guaranteed that none of those transactions can commit

8

without the earlier batch committing as well.

The changes made to the database by a transaction patching its changes

are not visible to active transactions since the parts of the logical database

a�ected by patching operations are exclusively locked by the transaction

doing the patching. The physical database may, however, change anywhere;

for example, a patching operation can cause a B-tree reorganization, but it

will not a�ect the logical database. Patching operations themselves must

use latches

1

to maintain consistency both against other patching operations

and against active transactions. It is important to understand that locks are

on logical database objects whereas latches are on pages, and the mapping

can be far from one-to-one. Since only latches are used during patching, it

is possible that not all of the updates made by a transaction are patched

atomically. Other patching operations can thus see partial updates unless

explicitly protected using latches. However, from the point of view of active

transactions the patching happens atomically since the a�ected portions of

the logical database are exclusively locked.

After a transaction has patched all of its changes, it must wait until its

commit batch has been completed or the transaction has been aborted. It

will be seen in Section 3.4 that it is possible to release all locks, including

exclusive locks, before entering the wait. This means that locks do not

need to be held during the wait and the processing of the commit batch

(since patching typically only involves operations in the cache, it is very

fast, whereas the commit batch must do real disk I/O, resulting in lengthy

waits). Early releasing of locks is possible because of the ordering restrictions

on transaction commits: it is not possible that a transaction which has read

uncommitted data would commit without the transaction which modi�ed

the data also committing.

3.3 Aborting Transactions

Aborting transactions which have not yet begun patching is trivial, be-

cause those transactions have not yet made any modi�cations to the global

database. It is thus su�cient to free all modi�cation data and all local pages

of the transaction.

If a transaction has to be aborted after it has released its exclusive locks,

1

A latch is a low-level lock on a physical page [4]. They are used to protect the physical

consistency of updates. A latch on a page locks the page in main memory. A shared latch

allows reading the page, and an exclusive latch allows updating the page. Latches are

often referred to as the FIX-USE-UNFIX protocol.

9

cascading aborts must be considered. All transactions which have accessed

any data modi�ed by the transaction must be aborted as well. This either

requires keeping a graph of dependencies between transactions, or aborting

all transactions which had not yet requested to be committed when the

transaction released its locks.

A transaction can also get aborted after it has started patching but before

it has released its locks. In this case it would have to undo its partial patching

modi�cations. This would require code similar to undo recovery in log-based

databases, and is clearly unwarranted for handling a few exceptional error

conditions. Aborting all transactions that would go to the same or a later

batch and throwing away any patched copies of pages solves this problem.

To summarize, if any transaction, for any reason, needs to be aborted

after it has begun patching its changes, all transactions in the same or a

later batch must be aborted. This is a very rare event and should only be

caused by exceptional error conditions such as a system crash (in which case

the cascading abort is implicit), a resource shortage (such as disk full), or

a hardware or software error (such as a disk crash). None of these happens

under normal operation.

3.4 Early Releasing of Locks

The purpose of the early releasing of locks optimization [15, 2] is to reduce

the time that locks are held. It turns out to be possible to release exclu-

sive locks immediately after the changes of the transaction have been made

globally visible. This is based on the following properties of the system:

1. no transaction which has requested to commit after transaction A

released its locks can commit before transaction A, and

2. no transaction which has requested to commit after transaction A

released its locks can commit without transaction A also committing.

Informal proof of the �rst property. A transaction releases its locks

after it has �nished patching. The commit thread takes into a batch those

transactions which have started to patch before a certain point of time.

Since A has �nished patching, it certainly has started to patch, and thus

will be included in the next batch to start. Since B cannot be included in

any batch earlier than the next batch to start, it cannot possibly commit

before A.

10

Informal proof of the second property. As described in Section 3.3,

if a transaction aborts after it has started patching, all active and uncom-

mitted transactions in the system will be aborted. Since B is in the same

or a later batch than A, and the transactions in a batch either all commit

or all abort, B is not yet committed when A aborts. Since all uncommitted

transactions are aborted if any transaction is aborted after it has started

patching, B is also aborted if A aborts.

3.5 Relaxing Persistence

If full persistence is not required by the application, it is possible to re-

duce transaction commit times by reporting success immediately when the

transaction requests to commit. The transaction will then become perma-

nent when the next commit batch completes (usually within a few tenths

of a second). All the things that could cause the transaction to be aborted

during that time are very exceptional, and can be treated as a crash. All

other properties of ACID are maintained. The decision whether to relax

persistence can be made on a per-transaction basis.

3.6 Very Large Transactions

The �ne-granularity locking scheme described here does not work well for

very large transactions, both because of the locking overhead, and because

the data structures needed to hold the modi�cations of the transaction grow

excessively large. Instead, large transactions are handled by switching to

page-level updates after a transaction has made a certain number of mod-

i�cations. This is used together with lock escalation. The idea is to make

exclusive copies of the modi�ed pages, so that there is no need to store the

changes separately, and data can be ushed to disk from the cache.

Switching to page-level updates for large transactions will usually not

reduce concurrency but will instead reduce the locking overhead. Without

switching to page-level updates, there might not be enough main memory

to store the changes of a very large transaction, and installing the �ne-

granularity changes of a large transaction at commit time would intolerably

lengthen the time needed for processing the commit batch and would delay

other transaction processing.

11

3.7 Extended Lock Modes

Extended lock modes [4] for commutative operations (such as increment and

decrement) can easily be supported with this scheme. The commutative

operation is recorded in the �ne-granularity changes of the transaction, and

the actual update to the data is done at patching time.

3.8 Read Operations

All read operations must consider the �ne-granularity changes of the trans-

action in addition to the data in the global database. The typical course of

action is to read the data from the global database, and then modify it as

speci�ed in the �ne-granularity changes. With appropriate data structures

this can be done e�ciently.

3.9 Interaction with Write Optimizations

The write optimizations cause some extra work on the cache and page ta-

ble levels [16]. The basic idea is to have virtual page numbers which refer

to pages in the cache for which physical page numbers have not yet been

assigned. The pages are then realized at commit time, which means that

actual physical page numbers are allocated for them. The physical page

numbers are then stored in the page table. (The cache is free to allocate

physical page numbers at any time and map requests to the real physical

addresses, but this is not visible to higher levels of the system.)

The implementation of concurrent transactions does not need to be aware

whether the page numbers returned to it by the lower levels are virtual pages

or real physical pages. In this paper the term physical page number will be

used to refer to either type of a page number. The code to implement

concurrent transactions and �ne-granularity locking is completely identical

whether or not the write optimizations are implemented.

3.10 Interaction with Media Recovery

Two physical page numbers are stored in page table entries for the imple-

mentation of media recovery. The implementation of mirroring is trivial, but

e�cient implementation of RAID appears di�cult (though not impossible).

If the physical page numbers shown to the implementation of concurrent

transactions are virtual (cf. Section 3.9), the implementation of concurrent

transactions does not need to know about media recovery. It never sees the

12

PageTable

BaseTransaction

Fine-granularity
types

Transaction

Cache

Media recovery

Figure 3: Layers of the Shadows system around the implementation of

concurrent transactions and �ne-granularity locking.

page numbers stored in the page table, and it never knows how the data is

stored physically.

3.11 Interaction with Snapshots

Determining when to free pages in the presence of snapshots [17] causes extra

work and complexity at the page table level. However, the implementation of

concurrent transactions does not need to know about snapshots. A snapshot

is taken by copying the page table pointer, and is not in any way a�ected

by uncommitted transactions.

4 Implementation

The ideas described in this paper have been implemented in the Shadows

database system prototype being built at Helsinki University of Technology,

Finland. This section describes the structure of that implementation to the

degree that is needed for understanding the techniques.

4.1 Overview

Concurrent transactions have been implemented using the C++ classes

PageTable, PageReference, BaseTransaction, BaseTransactionData-

base, Transaction, TransactionDatabase, and a number of classes each

de�ning one type of �ne-granularity locking (Figure 3).

13

PageTable Implements the page table and atomic updates to the page table.

It also implements write optimizations [16], snapshots [17], and page

table caching (Section 2.3). This class is not described in this paper;

however, the relevant interfaces are listed below. Levels above the

page table never see physical page numbers which have been entered

into the page table.

allocate logical page number Allocates a logical page number.

free logical page number Frees a logical page number (only used

for freeing pages previously allocated in the same transaction;

other pages are freed by changing their mapping to nil).

read logical page Translates the given logical page number to a

physical page number, reads the page, and returns a read-only

reference to it.

begin update Begins a page table update.

update mapping Tells the page table level the new mapping of a

logical page. The page table level records the mapping in its

private data structures.

commit update Commits the page table update. This works in two

phases. In the �rst phase this realizes the new physical pages and

constructs a new page table. The new page table is then made

visible to read logical page, and a callback mechanism is used

to inform the higher level that the new pages are visible. In phase

two this ushes the new pages and the new page table pages to

disk and updates the page table pointer. This then frees the old

data and page table pages if there are no references to them from

snapshots.

read physical page Reads a physical page and returns a read-only

reference to it. It is illegal to read a physical page which has been

entered into the page table (but it is legal to have a reference while

it is being entered).

read physical page no wait Reads a physical page if it is already

in the cache; otherwise returns an error.

allocate physical page Allocates a new physical page. Returns the

number of the page and an updatable reference to the page.

allocate physical copy of logical page Allocates a new physical

page, copies the contents of an existing logical page to that page,

14

and returns the new page number and a reference to it. If there

are any references to the physical page corresponding to the log-

ical page, this will wait until all references have been released.

Most of the time this function can be implemented by \renam-

ing" the page in the cache, and no data needs to be copied.

allocate physical copy of physical page Allocates a new physical

page, copies the contents of the speci�ed physical page to it, and

returns the new page number and a reference to the new page.

If there are any references to the old page, this will wait until

all references to the page have been released. Most of the time

this function can be implemented by \renaming" the page in the

cache, and no data needs to be copied.

read physical page for update Returns an updatable reference to

the given physical page. It is illegal to read a physical page which

has been entered into the page table, and it is illegal to have an

updatable reference while it is being entered.

free physical page Frees the speci�ed physical page. It is illegal to

free a page which has been entered into the page table.

PageReference Acts as a reference to a page in the cache. The page is

latched (in shared mode if the reference is read-only, and in exclusive

mode if the reference is updatable). The method release is used to

release the latch and the reference when no longer needed. ptr returns

a const pointer to the data of the page, and updatable ptr returns

a non-const pointer to the data (and raises a fatal exception if the

reference is read-only).

BaseTransaction Implements concurrent transactions and the framework

for building �ne-granularity locking types. Most of the rest of this

paper is about this class.

BaseTransactionDatabase A descriptor for a database (or a snapshot)

complementing the BaseTransaction class. This contains the data

common to all active transactions in a database.

Transaction Implements concurrent transactions with �ne-granularity

locking. Mostly a wrapper for all supported �ne-granularity types.

New �ne-granularity locking types are added to this class. Most

requests are forwarded to the appropriate �ne-granularity type;

15

commit transaction and abort transaction are forwarded to

BaseTransaction (there is one BaseTransaction object in every

Transaction object).

TransactionDatabase A descriptor for a database (or a snapshot) comple-

menting the Transaction class. This contains any per-database data

which may be needed by �ne-granularity types.

Fine-granularity types implement the various types of �ne-granularity lock-

ing. For example, FGBTree implements �ne-granularity operations for

B-trees. All �ne-granularity types implement the following operations:

patch changes patches the changes made by the transaction to the

global database, and abort changes frees all changes made by the

transaction. Additionally each �ne-granularity type implements type-

speci�c operations, such as insert and delete for B-trees. The actual

implementations of various �ne-granularity types are beyond the scope

of this paper.

4.2 The BaseTransaction Class

BaseTransaction (together with BaseTransactionDatabase) implements

most of the ideas presented in this paper. An overview will be presented in

this section; Section 4.3 describes the data structures, Section 4.4 describes

the locking protocols used, and Section 4.5 describes the implementation of

each operation.

The BaseTransaction object o�ers the following interfaces for imple-

menting �ne-granularity types.

read page Reads the speci�ed logical page and returns a read-only refer-

ence to it.

read page for update Reads the speci�ed logical page and returns an

updatable reference to it. If this is used while the transaction is active,

locking must be used to guarantee that no other transaction can access

any data on the same page.

allocate page Allocates a new logical page number and returns an updat-

able reference to the page.

free page Frees the speci�ed logical page.

16

lock Performs the speci�ed locking operation. Returns when the lock has

been granted, a deadlock has been detected, or the timeout expires.

Additionally, it has commit transaction and abort transaction in-

terfaces. It also expects the Transaction class to implement two inter-

faces which are called by BaseTransaction: patch changes callback is

expected to call the patch changes interface of each �ne-granularity type,

and abort changes callback is expected to call the abort changes inter-

face of each �ne-granularity type.

The interfaces for implementing �ne-granularity types can be

used both while the transaction is active and from within the

patch changes callback function. However, they are implemented dif-

ferently in the two cases. Also, if anything else than read page is used

while the transaction is active, it is important to make sure that no other

transaction is going to access the page (neither in active mode nor during

patching). The only reason for allowing calls to modi�cation operations

while the transaction is active is to allow switching to page-level locking for

large transactions.

4.3 Data Structures

A BaseTransactionDatabase object contains a list of all active transac-

tions, a lock manager, a list of transactions waiting to be included in the

next commit batch, an incremental page table for patched changes to go

in the next commit batch, and two read/write locks called patch lock and

stability lock.

A BaseTransaction object contains a pointer to the corresponding

database object, per-transaction data for the lock manager, the state of

the transaction (active, committed, etc.), and a per-transaction incremental

page table for storing page-level modi�cations made by the transaction.

The incremental page tables contain hL; P i pairs (L is a logical page

number and P is the corresponding physical page number), and are imple-

mented as hash tables. They support shared/exclusive-style locking of the

mapping for an arbitrary L (whether in the table or not; the locking may

be of a coarser granularity than a single mapping). The global incremental

page table in BaseTransactionDatabase is called global remap, and the

local incremental page table in BaseTransaction is called local remap.

To access a logical page, a transaction �rst looks for a mapping for the

page in local remap. If not found, it looks for a mapping in global remap.

17

If not found, it uses the page table. local remap and global remap thus

act as �lters for the database state the transaction sees.

4.4 Locking Protocols

There are several potential problems which must be avoided using locking

(in this section, locking refers to semaphores and other low-level locks).

1. Old physical page numbers become invalid when the pages are entered

into the page table. The PageTable module will inform the commit

batch via a callback when the pages have become visible through the

page table. After the callback returns, the old physical page numbers

are invalid and the pages can only be accessed through the page table.

2. Patching of changes must be atomic with respect to commit batches

(that is, the changes of a transaction must all be included in the same

batch).

3. If two transactions simultaneously attempt to patch a page for which

there is no entry in global remap, both might create a copy of the

page. Similarly, a page number retrieved from global remap might

become invalid before being used (for example, due to being freed by

another transaction).

4. Latching must be implemented in such a way that a shared latch on

a page means that no-one else can get an exclusive latch on the same

logical page (but a di�erent copy). This is important when using latch

coupling in the implementation of �ne-granularity types.

patch lock is a lock which can be locked in either shared or exclusive

mode. A transaction locks it in shared mode before it begins patching its

changes, and releases it after it has �nished patching. A commit batch locks

it in exclusive mode before determining which transactions to include in the

batch. (Locking patch lock in exclusive mode e�ectively quiesces patching

activity.)

stability lock is a lock which can be locked in shared or exclusive

mode. It is used to protect the validity of old page numbers on global remap

(problem 1 above). It is used in such a way that stability lock is locked in

exclusive mode only when patch lock is being held in exclusive mode. Thus,

either patch lock or stability lock must be held in shared mode while

18

using global remap to guarantee that the page numbers do not \disappear"

while they are being used.

The �rst problem is thus solved by holding either patch lock

or stability lock in shared mode while using page numbers on

global remap. The commit batch will be holding both locks in exclusive

mode when it clears global remap and invalidates the page numbers.

The second problem is solved by quiescing patching before making

changes to the page table. This is done by having transactions lock

patch lock in shared mode while they are patching their changes, and hav-

ing the commit batch lock it in exclusive mode when it wishes to quiesce

patching.

The third problem is solved by locking the mapping for the a�ected page

in global remap. The mapping is locked in shared mode for read operations,

and in exclusive mode for operations which may change the mapping.

The fourth problem is solved by having allocate physical copy of -

logical page() and allocate physical copy of physical page() wait

until all references to the page have been released.

Locks are always acquired in the following order to avoid deadlocks:

patch lock �rst, stability lock then, and global remap mapping locks

last. It is permissible to not lock some of these, but none of the former may

be requested while any of the \latter" locks are being held by the thread.

There is no need to lock entries in local remap, because a single trans-

action can do only one action at a time. (Nested transactions and other

environments where parallel accesses are allowed are beyond the scope of

this paper.)

There is no need to protect against two transactions creating a local page

for a single logical page. This should never happen, because transaction-

level locking should only allow one transaction at a time to do page-level

modi�cations on any given page. However, it is desirable to trap this con-

dition, because it is an indicator of locking bugs in the implementation of

�ne-granularity types.

It is sometimes necessary to hold locks while reading data. It is desirable

to implement these reads in such a way that the read is �rst attempted

using read physical page no wait (or its page table equivalent), and if

unsuccessful, the locks are released, the page is read into memory, and the

operation is restarted. This has not been described in the next section in

order to keep the pseudocode comprehensible.

19

4.5 Implementation

This section describes the implementation of each of the operations per-

formed by BaseTransaction. The operations are described in pseudocode.

Error handling and handling pages of di�erent sizes are not included be-

cause they are not essential for understanding the algorithms and would

unnecessarily complicate the pseudocode.

4.5.1 commit transaction

commit transaction() works as follows.

Release all shared locks held by the transaction

Lock patch lock in shared mode

Merge local remap to global remap

Call patch changes callback() to patch changes

Release all locks held by the transaction

Add the transaction to the commit list

Wake up the commit thread if it is sleeping

Unlock patch lock

Sleep until the commit thread has either committed or aborted the transaction

return status

It is important to notice that patch lock is already locked in shared

mode when patch changes callback() is called, and is thus held when

any of the other functions are called while patching.

The relaxing persistence optimization (Section 3.5) is not included in the

pseudocode for clarity.

4.5.2 The Commit Thread

The commit thread works as follows. The code for handling failures and for

terminating the commit thread is not included for clarity.

loop forever

begin

Sleep until work to do

Lock patch lock in exclusive mode

Take all transactions from the commit list

begin update()

20

for all mappings hL; P i in global remap do

update mapping(L; P)

commit update()

Mark the transactions as committed and wake them up

end

During the call to commit update(), the page table module will call a

callback function provided by the BaseTransaction class after the changes

have been made visible through the page table but have not yet been written

to disk. The callback function works as follows.

Lock stability lock in exclusive mode

Clear all mappings in global remap

Unlock stability lock

Unlock patch lock

4.5.3 abort transaction

abort transaction() works roughly as follows. The actual implementa-

tion is a bit tricky, because it must handle abortions at di�erent stages of

processing, and must handle aborting all transactions. It must also prevent

new transactions from starting while aborting all transactions.

Release all locks held by the transaction

Call abort changes callback() to free �ne-granularity changes

Free new pages in local remap

if the transaction had already started to patch its changes

then begin

Abort all active transactions in the same and any later batch

Free new pages in global remap

end

4.5.4 read page

During patching read page(L) works as follows. patch lock is held in

shared mode when this code is executed.

21

Lock mapping for L in global remap in shared mode

if hL; P i for L in global remap

then R = read physical page(P)

else R = read logical page(L)

Unlock mapping for L in global remap

return R

While the transaction is active read page() works as follows.

if hL; P i for L in local remap

then begin

R = read physical page(P)

return R

end

Lock stability lock in shared mode

Lock mapping for L in global remap in shared mode

if hL; P i for L in global remap

then begin

R = read physical page(P)

Unlock L in global remap

Unlock stability lock

return R

end

R = read logical page(L)

Unlock L in global remap

Unlock stability lock

return R

4.5.5 allocate page

During patching allocate page() works as follows. patch lock is held in

shared mode when this code is executed.

L = allocate logical page number()

P;R = allocate physical page()

Lock L in global remap in exclusive mode

Add hL; P i to global remap

Unlock L in global remap

22

return L;R

When the transaction is active (and using page-level locking) allo-

cate page() works as follows.

L = allocate logical page number()

P;R = allocate physical page()

Add hL; P i to local remap

return L;R

4.5.6 free page

During patching free page(L) works as follows. patch lock is held in

shared mode when this code is executed.

Lock mapping for L in global remap in exclusive mode

if hL; P i for L in global remap

then begin

free physical page(P)

Change mapping for L in global remap to be hL;nili

end

else Add hL;nili to global remap

Unlock mapping for L in global remap

return

When the transaction is active (and using page-level locking)

free page() works as follows.

if hL; P i for L in local remap

then begin

free physical page(P).

Change mapping for L in local remap to be hL;nili

end

else Add hL;nili to local remap

return

23

4.5.7 read page for update

During patching read page for update(L) works as follows. patch lock

is held in shared mode when this code is executed.

Lock mapping for L in global remap in exclusive mode

if hL; P i for L in global remap

then begin

R = read physical page for update(P)

Unlock mapping L in global remap

return R

end

P

2

; R

2

= allocate physical copy of logical page(L)

Add hL; P

2

i to global remap

Unlock mapping for L in global remap

return R

2

While the transaction is active (and using page-level locking)

read page for update() works as follows.

if hL; P i for L in local remap

then begin

R = read physical page for update(P)

return R

end

Lock stability lock in shared mode

Lock L in global remap in exclusive mode

if hL; P i for L in global remap

then begin

P

2

; R

2

= allocate physical copy of physical page(P)

Unlock L in global remap

Unlock stability lock

Add hL; P

2

i to local remap

return R

2

end

P

2

; R

2

= allocate physical copy of logical page(L)

Unlock L in global remap

Unlock stability lock

Add mapping hL; P

2

i to local remap

24

return R

2

5 Discussion and Further Research

Shadow paging has many desirable properties. Recovery is simple, transac-

tion rollback is fast, the write optimizations contribute to good performance,

mirroring performs extremely well for media recovery, no logs are needed

which simpli�es both the implementation and administration, and snap-

shots allow read-only transactions to be run without interference with other

transactions and allow e�cient on-the-y multi-level incremental dumping.

There are still many open questions which await answers.

� The force policy [4] is used for bu�er management. That is, all pages

modi�ed by a transaction must be written to disk before the transac-

tion can commit. It is not clear how much this really a�ects through-

put. Even in log-based systems each modi�ed page must eventually

be written to disk, and since the density of writes is typically low

compared to the size of the database, the total I/O is not a�ected

very much by the force policy, except in hot-spots. The write opti-

mizations may o�set the extra writes. Jim Gray has suggested using

battery-backed-up memory [personal communication], but the issue

has not yet been looked into.

� The time needed to commit a transaction is longer than in log-based

databases. The reason is that more data needs to be written to disk

(force policy, page table writes, and page table pointer writes). Wait-

ing for the next commit batch also causes a short delay. The di�erence

is probably some tenths of a second.

� Update transactions of greatly varying sizes may intolerably slow down

commit batches. In general, processing of very large transactions is

somewhat awkward and may sometimes require locking the entire table

or index. These are probably not serious problems in most environ-

ments, but there are situations where the current solutions do not work

very well.

� The implementation of �ne-granularity transactions somewhat compli-

cates normal transaction processing because changes need to be kept

separately. This also causes some overhead (although in main memory

25

databases \shadow updating" [8] has been reported to perform quite

well). Preliminary benchmarks using B-trees and TP1-like transac-

tions suggest that the overhead is not signi�cant.

� Even though solutions have been presented for clustering [16], there are

some types of applications (a mixture of random updates and frequent

sequential reads) where the performance may not be very good.

� Media recovery is quite di�erent from log-based systems since there

is no log which could be used for media recovery. Mirroring works

very nicely with shadow paging (it is possible to get all the bene�ts of

doubly distorted mirrors [12] using normal disk controllers and with

less overhead), whereas e�cient use of RAID is nontrivial. E�cient

solutions appear to be possible but are still under research.

� It is possible to implement nested transactions and partial rollbacks

with shadow paging. However, it is still unclear how e�cient the im-

plementation is going to be. It may require combining �ne-granularity

changes of multiple subtransactions, and the �ne-granularity types

must be designed in such a way that this can be done e�ciently. This

currently seems practical but is still under research.

� Two-phase commit requires one commit batch to do phase one and

another to do phase two [15]. The overhead is not very high, but may

still be too much in some applications. The severity of the problem is

not yet known.

All of these issues are still more or less open. Better solutions are likely

to be found for many of them. The �nal question, whether the good aspects

of shadow paging (e.g. write optimizations, snapshots) o�set the problems,

is still open and probably will not be answered until the ideas have been

fully tried out in practice.

6 Conclusion

A framework has been presented for implementing concurrent transactions

with shadow paging. The proposed framework supports �ne-granularity

locking, extended lock modes, and early releasing of locks. The framework

provides a sound basis for building data organization speci�c �ne granularity

types. The algorithms are reasonably simple and e�cient.

26

The algorithms have been implemented in the Shadows database sys-

tem prototype being built at Helsinki University of Technology, Finland.

Preliminary benchmarks using B-trees and TP1-like transactions have given

promising results, but it is still too early to do real performance evaluations.

The next step is to develop e�cient data structures for the most common

�ne-granularity types. Most of the theoretical problems have been solved,

and B-trees have been implemented. Further theoretical and experimental

work is currently underway.

Acknowledgements

Many of the ideas presented in this paper have arisen as a result of dis-

cussions with Kenneth Oksanen, Heikki Suonsivu, Johannes Helander, and

Heikki Saikkonen. The authors thank Jim Gray and Antoni Wolski for their

valuable comments on earlier versions of these ideas.

References

[1] R. Agrawal and D. J. DeWitt. Integrated concurrency control and re-

covery mechanisms: Design and performance evaluation. ACM Trans-

actions on Database Systems, 10(4):529{564, 1985.

[2] M. H. Eich. A classi�cation and comparison of main memory database

recovery techniques. In Data Engineering, pages 332{339, 1987.

[3] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Put-

zolu, and I. Traiger. The recovery manager of the System R database

manager. ACM Computing Surveys, 13(2):223{242, 1981.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, San Mateo, 1993.

[5] J. Kent, H. Garcia-Molina, and J. Chung. An experimental evaluation

of crash recovery mechanisms. In ACM PODS, pages 113{121, 1985.

[6] J. M. Kent. Performance and Implementation Issues in Database Crash

Recovery. PhD thesis, Department of Electrical Engineering and Com-

puter Science, Princeton University, 1985.

27

[7] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data

storage system. Technical report, Computer Science Lab., Xerox Palo

Alto Research Center, Apr. 1979.

[8] X. Li and M. H. Eich. Post-crash log processing for fuzzy checkpointing

main memory databases. In Data Engineering, pages 117{124, 1993.

[9] R. A. Lorie. Physical integrity in a large segmented database. ACM

Transactions on Database Systems, 2(1):91{104, 1977.

[10] D. A. Menas�ce and O. E. Landes. On the design of a reliable stor-

age component for distributed database management systems. In Very

Large Databases, pages 365{375, 1980.

[11] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

ARIES: A transaction recovery method supporting �ne granularity

locking and partial rollbacks using write-ahead logging. ACM Transac-

tions on Database Systems, 17(1):94{162, 1992.

[12] C. U. Orji and J. A. Solworth. Doubly distorted mirrors. In ACM

SIGMOD, pages 307{316, 1993.

[13] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473{530,

1982.

[14] J. S. M. Verhofstad. Recovery techniques for database systems. ACM

Computing Surveys, 10(2):167{195, 1978.

[15] T. Yl�onen. Concurrent shadow paging: A new direction for database re-

search. Technical Report 1992/TKO-B86, Helsinki University of Tech-

nology, Finland, 1992.

[16] T. Yl�onen. Write optimizations and clustering in concurrent shadow

paging. Technical Report 1993/TKO-B99, Helsinki University of Tech-

nology, Finland, 1993.

[17] T. Yl�onen, T. Kivinen, H. Suonsivu, and T. M�annist�o. Concur-

rent shadow paging: Snapshots, read-only transactions, and on-the-y

multi-level incremental dumping. Technical Report 1993/TKO-B104,

Helsinki University of Technology, Finland, 1993.

28

