
An Algorithm for Full-Text Indexing

Tatu Yl�onen

�

Abstract

Conventional B-tree insertion algorithms typically require sev-

eral disk accesses per insertion. This is inconveniently slow for full

text databases. Group update can signi�cantly speed up insertion.

The idea is to collect and sort many keys in memory, and then

merge them with the B-tree on disk.

This paper presents a concurrent group update algorithm for

B

+

-trees; in addition to allowing concurrent operation, the new

algorithm provides 90 % CPU time savings compared to existing

group update algorithms. Experimental results show that the al-

gorithm uses on the order of 0.003 disk accesses per key in full-text

indexing.

1 Introduction

In full text databases, any word in the stored documents can be used

as a search key. A database of 100 megabytes of English text contains

about 17 000 000 words and 210 000 unique word forms. The huge number

of keys is problematic in conventional B-tree based indexing systems;

assuming each insertion takes three disk accesses [2], the initial indexing

of the 100 megabyte database would take about a week. Databases of

several gigabytes are not uncommon; also, interactive applications need to

be able to add new documents (often containing several thousand words)

to the database while the user is waiting.

Signature �les [4, 14] allow fairly e�cient indexing and retrieval; how-

ever, they do not allow searching for truncated keys, which is very im-

portant in languages that have a richer morphology than English (for

example, a Finnish noun can have 2 000 in
ectional forms, and a verb as

�

Helsinki University of Technology, Laboratory of Information Processing Science,

SF-02150 Espoo, Finland. E-mail: ylo@cs.hut.�

1



many as 12 000 forms [9, p. 44]). Inverted �les implemented as B-trees

allow range queries (which can be used for searching in
ected forms), but

conventional insertion methods are fairly slow.

As pointed out in [18], B-tree indexing can be done much faster if the

keys to be added are sorted in memory, and then merged with the B-tree

on disk in sorted order. Srivastava and Ramamoorthy [18] presented two

algorithms for merging the keys in memory to the tree on disk. They

introduced the term group update for this approach. However, their algo-

rithms are quite complicated and are not directly applicable to multi-user

environments.

Cutting and Pedersen [3] presented a much simpler and equally e�-

cient method for merging the keys in memory to the tree on disk. Their

idea is simply to keep the nodes on the path from the root to the pre-

viously accessed leaf node in cache, and use the normal B-tree insertion

algorithm to insert the keys in sorted order. This method is easy to im-

plement, but cannot be used if several computers on a network need to

access the index �le simultaneously.

This paper presents a new algorithm for merging the keys to the B-

tree. Unlike previous algorithms, this algorithm allows multiple concur-

rent updates and searches. This paper also introduces the idea of incre-

mental construction of leaf nodes; it is shown that this optimization can

reduce CPU time requirements by about 90 percent compared to previous

group update algorithms. Compared to conventional B-tree insertion al-

gorithms, the new algorithm is about 1 000 times faster when very many

keys are to be inserted at the same time.

The new algorithm could also be used for deletion, and it would be

possible to collect insertions and merges simultaneously in memory, as

was done in [17].

2 A fast grouped B-tree insertion algo-

rithm

This section presents a new grouped insertion algorithm for variable key

length B

+

-trees. The presentation is oriented towards full text databases,

but the same algorithm could be used with more conventional databases

as well.

Figure 1 illustrates the structure of the index �le. A key corresponds

to a word in a document, and occurrence data refers to application-

dependent data used to describe in which document and where in the

2



Leaf node

Occurrence data

Keys

Keys

Continuation records

Unused space Non-leaf nodes

Root Pointer

Figure 1: Index �le structure.

document the word occurred. Some occurrence data is stored with the

key; if a key has very many occurrences, it may have a list of continuation

records containing more occurrence data.

The new indexing algorithm works in two alternating phases. In the

�rst phase, keys and occurrence data are collected in main memory. The

keys are sorted, and each key is stored only once. Occurrence data for

multiple occurrences of a key is combined.

When the size of the structure in memory reaches a speci�ed limit,

the keys and occurrences in memory are merged with the B-tree on disk.

Keys are read out of the memory structure one at a time (in the same

order in which the B-tree on disk is ordered), and the node where the key

should be inserted is located. Any nodes on the path from the root to the

leaf node will be split if it cannot be guaranteed that there is enough space

in the node for inserting at least one more key (top-down rebalancing; see

[6, 12]).

If the key being inserted already exists in the leaf node, new occurrence

data will be appended to the data already in the node. If the key does

not yet exist, it (and its occurrence data) is added to the node. If the

key has very much occurrence data in the node, some of it is moved to

continuation records outside the node.

If there isn't enough space in the leaf node to add the new key and

its occurrence data, the node must be split. A new leaf node is created,

approximately half of the data in the old node is copied to it, and it is

3



added under the parent (it is known that there is enough space in the

parent). If, after adding the new key, there still remains space for at least

one more key in the parent, adding can be continued where it was before

split. On the other hand, if there isn't enough space, indexing must be

restarted from the root.

When a key has been added, processing continues with the next key.

Quite often, the next key should be added to the same node as the previ-

ous key, or to a node under the same parent as the previous key. In the

former case, processing of the node simply continues. In the latter case,

a disk access is needed to load the new node, but CPU time (and concur-

rency and caching complications) needed for a full lookup are avoided. If

the next key is not under the same parent as the previous one, merging

must be restarted from the root.

2.1 Bu�ering data in memory

The purpose of bu�ering many keys in memory is to

� sort the keys into the same order that the B-tree on disk uses, and

� combine multiple occurrences of a single key.

Keys are inserted to the memory bu�er in an arbitrary order (quite

often the textual order), and read out in the order used by the B-tree

(usually the alphabetical order). The bu�er can be implemented as a

red-black tree [16, pp. 187{199], or using any other convenient data

structure.

2.2 Merging the keys in memory to the B-tree on

disk

The insertion algorithm makes use of the knowledge that it receives the

keys in the same order that the B-tree is in. When many keys are inserted

in the same node, signi�cantly less than one disk access per key is needed.

Also, by not starting the insertion from the root every time, signi�cant

amounts of CPU time can be saved, at the same time making concurrent

operation a lot easier by not requiring locking of the whole path from the

root to the leaf node. Incremental construction of leaf nodes results in

further CPU time savings.

An outline of the algorithm is shown in �gure 2.

4



while there are more keys to insert do

begin

Get next key.

if there is no previous node

then Find the node where key belongs, starting from the root.

else if the new key belongs to a di�erent node

then Find the node where the key belongs.

if there is enough space for the key in the current node

then Insert the key in the current node.

else begin

Split the current leaf node.

if there might not be enough space in the parent node

then Find the node where the key belongs

starting from the root.

Insert the key in the current node.

end

end

Figure 2: The new merging algorithm.

If needed, non-leaf nodes are split when searching for a leaf node

starting from the root. This ensures that a node can always be split and

there will be enough space in the parent. There is no need to keep the

ancestors of the parent of the leaf node locked. Nodes are always locked

in a strict top-down order, and deadlocks are thus avoided.

2.2.1 Finding a leaf node, starting from the root

To �nd the leaf node where the current key should be inserted, the B-

tree searching algorithm is used. Any nodes which are too full to hold

one more key will be split on the way down the tree. If the root node is

split, a new root node will be created; otherwise a key will be moved to

the parent node (we have just come from there, and know that there is

enough space for the key). At this point, the parent node (or the root

pointer) is still locked. After it is known that there is enough space in

the node, and it is a non-leaf node, the parent can be unlocked.

When the leaf node where the key should be inserted is found, both

it and its immediate parent are left locked.

Figure 3 illustrates the algorithm for �nding a leaf node.

5



Lock and read the root node address.

Lock and load the root node.

while the node is not a leaf node do

begin

if there isn't enough free space in the node

then begin

Split this node.

Release all locks and restart from the root

end

Unlock the root node address or the parent node.

Find the child pointer where the current key belongs.

Lock and load the child node.

end

Figure 3: Finding the leaf node and splitting non-leaf nodes.

2.2.2 Locating the node where the next key should be inserted

In most cases, the next key is to be inserted in the same node as the

previous key. The implementation should try to optimize this case (see

section 2.4).

The next common case is that the key belongs to a node under the

same parent node as the previous key. This can be tested by looking for

the key in the parent node. If the current key is greater than the greatest

key in the parent node, it must be looked up starting from the root (to

speed up the �rst merge phase of a new index �le, an implementation

might optimize inserting to the rightmost node of the index). Normally

the next node will be found under the same parent as the previous node.

It is locked and loaded, and it becomes the new current node.

Figure 4 illustrates the algorithm for �nding the leaf node for the next

key.

2.2.3 Inserting a key to a leaf node

When inserting a new key to a leaf node, or adding occurrence data to

an existing key, it is possible that space in the current node runs out.

In this case, the leaf node must be split. It is known at this point that

there is space in the parent node for inserting the key which is passed up.

However, after insertion, it must be checked that there remains enough

space in the parent for one more key. If not, processing of the next key

must start from the root.

6



if the key belongs to the same node as the previous key

then return

Unlock the previous leaf node.

Find in the parent node the child pointer under which

the key belongs.

if the child pointer is the last pointer in the parent node

then Unlock everything and use the algorithm of �gure 3.

else Lock and load the new leaf node.

Figure 4: Finding the node where the next key belongs.

2.2.4 File locking

All locks are allocated in top-down order from the root pointer to the leaf

nodes. When a node is locked, its parent (or the root pointer) will always

be locked. The parent (or the root pointer) can be unlocked if there is

enough space in the child node (and the child node is a non-leaf node).

This allows other processes to access other parts of the index.

The parent of the leaf node and the leaf node will both be kept locked,

since the parent might need to be modi�ed as a result of the child splitting,

and the child must be locked before reading because someone else might

have been using it. There is no need to lock continuation records, as any

process accessing a continuation record chain will have the node pointing

to the chain locked.

Searching should also allocate its locks in top-down order. Searching

processes use shared locks and indexing processes use exclusive locks.

Deadlocks are not prossible since all locking is done in strict top-down

order.

2.3 Continuation records for occurrence data

It is best to store some of the occurrence data of a key in the node with

the key [3]. Most keys appear only a few times, whereas some keys can

appear millions of times unless they are �ltered out as \stop words".

Even for valuable search keys the number of occurrences can vary from

one to several thousand. It is impractical to prepare to store that many

occurrences in the node { there can be more occurrences than is the size

of the node.

Continuation records are a solution to the problem of storing occur-

rences. If a key has very many occurrences, some of them are moved

7



to separate records containing only occurrence data. These records are

chained together, and the data for the key in the node contains a pointer

to the head of the chain. Continuation records can easily be implemented

in such a way that the chain never needs to be accessed during insertion.

New records are added to the front of the chain when there are su�ciently

many occurrences in the node.

2.4 Optimizing multiple insertions to a node

In the most common case, many keys are inserted into the same node.

Regardless of whether the key is new or already exists in the node, inser-

tion typically involves inserting data at some point in the middle of the

node. The rest of the node must be moved correspondingly, for each key

being added to the node. (See [10] for a di�erent approach.)

The cost of multiple copying can be approximated by

�

t

mc

=

�

N

i

1

2

�

U

n

C

(1)

where

�

t

mc

is the average time needed for multiple copying,

�

N

i

is the

average number of insertions to a node,

�

U

n

is the average number of

bytes used in the node, and C is the speed at which the CPU can copy

data (bytes/sec). From [7],

�

U

n

is about 0:68S

n

(S

n

is the size of a node)).

Thus,

�

t

mc

=

�

N

i

0:34S

n

C

: (2)

A single copy of the node could be made in time

�

t

sc

=

0:68S

n

C

: (3)

Assuming

1

�

N

i

= 50, S

n

= 8192 and C = 5MB=s (the data is usually

unaligned),

�

t

mc

� 28ms and

�

t

sc

� 1ms.

The total time

�

t

t

needed for processing a node is

�

t

t

=

�

t

r

+

�

t

p

+

�

t

c

+

�

t

w

: (4)

Assuming the time for reading the node

�

t

r

= 10ms, the time for other

processing (compares etc.)

�

t

p

= 3ms and the time for writing the node

1

In experiments, with 5MB of bu�er memory and 8kB node size,

�

N

i

was 159 for a

10MB �le of English text, 40 for a 100MB �le of English text, and 157 for an 11MB

�le of Finnish text.

8



�

t

w

= 3ms (asynchronous writes),

�

t

t

mc

� 44ms and

�

t

t

sc

� 17ms. CPU time

usage (

�

t

p

+

�

t

c

) is 31ms for multiple copying, and 4ms if multiple copying

can be avoided. This is a saving of almost 90 percent. In real time, the

merge phase becomes about twice as fast as with earlier algorithms.

Multiple copying can be avoided by constructing a new version of the

node incrementally. A new copy of the node is created in memory when

the �rst key is inserted to the node. When insertion moves to another

node, the new version of the node is written to disk overwriting the old

version.

For incremental copying to work, the keys in each node must be kept

sorted (which is a good idea anyway). When a key is to be inserted, all

keys up to that key are copied to the new version of the node. If the key

already exists in the node, it too is copied. If it does not exist in the

node, it is created at the end of the new version. If key layout is designed

properly, new occurrence data can be simply appended to the key on the

new node. When the next key is to be added, keys are copied up to that

key, etc. When all keys belonging to the same node have been added, the

remaining keys are copied from the old node to the new node, and the

new node is written to the index �le.

If there isn't enough space in the new node to add a key or its occur-

rence data, the node must be split. This can be done by allocating a fresh

node and writing about half of the data in the new node to the allocated

node. Remaining data in the new node is moved to the beginning of the

node, the �rst key of the newly allocated node is inserted in the parent,

and processing can continue.

Also, special care must be taken when there is no longer enough space

in the parent node. It is possible that the new node is full, most of the

old node is still unprocessed, and there is space in the parent node for

only one more entry. In this case, the new node cannot be simply split

in half; instead, the data on the new node and the remaining data on the

old node must be divided between the new node and the old node, both

nodes written to disk, and then inserting must be restarted from the root.

2.5 Optimizing index �le size

Space is needed in the index �le for both the B-tree of the unique keys

and for the occurrences. Let us denote the space used by the B-tree with

S

t

and the space used for continuation records by S

c

. Let N

u

denote the

number of unique keys,

�

L

k

the average length of a key,

�

L

b

the average

overhead per key for bookkeeping,

�

L

on

the average amount of occurrence

9



information per key in the node,

�

L

oc

the average amount of continuation

data per key in continuation records. The total size of the index �le

S

i

= S

t

+ S

c

: (5)

Using the results of [7],

S

t

�

N

u

(

�

L

k

+

�

L

b

+

�

L

on

)

0:68

(6)

and

S

c

� N

u

�

L

oc

(7)

The values

�

L

on

and

�

L

oc

are sometimes hard to obtain, and a reasonable

estimate of the total index �le size can also be obtained from

S

t

�

N

u

(

�

L

k

+

�

L

b

)

0:68

+N

o

�

L

o

(8)

where N

o

is the number of occurrences, and

�

L

o

is the average length

of occurrence data per occurrence. This estimate gives slightly smaller

results than reality, because some of the occurrence data is in the nodes

and uses more space than is accounted for in the above equation.

In experimental analysis it was found that a 315 MB corpus of English

text

2

contained about 50 000 000 word occurrences and approximately

210 000 unique word forms, and the average length of a word was 4.26

characters.

Using equation 8 and assuming N

u

= 210 000, N

o

= 50 000 000,

�

L

k

=

4:26,

�

L

b

= 3, and

�

L

o

= 4, the size of the index �le is approximately 202

megabytes. 2 megabytes are needed for the keys, and 200 megabytes for

the occurrences.

With this material (English newspaper articles), saving a single bit on

the average in occurrence data results in a saving of about 3 percent in

the total size of the index �le, whereas saving a byte in key length on the

average only saves about 0.1 percent. Even if the space requirement of

the keys could be reduced to zero, only about one percent would be saved

in index �le size.

[1] suggests the pre�x omission method for reducing the size of the

index �le. The idea is to store with each key the number of characters in

common with the previous key, and only store the di�erent characters. If

2

Newspaper-like articles extracted from the ClariNet newsfeed; this material con-

tains only the actual articles (all UseNet news headers have been stripped).

10



�

L

p

is the average length of the common pre�x, this methods saves about

S

p

= N

u

�

L

p

bytes. However, as noted earlier, the keys only use up about

one percent of the size of of the index �le. Thus, even if pre�x omission

could reduce the average stored key length to zero, no signi�cant savings

would be obtained. This results suggests that using pre�x omission is

waste of CPU time for large databases.

Preparatory splitting causes some space overhead in non-leaf nodes

(note that it does not a�ect leaf nodes, as they do not have children that

could be split). Assuming a maximum key length L

max

(including worst-

case overhead), a node size S

n

, an average branching factor

�

b, and N

u

unique keys, the number of non-leaf nodes

N

n

= dlog

�

b

N

u

(

�

L

k

+

�

L

b

+

�

L

on

)

0:68S

n

e + 1 (9)

The amount of disk space wasted by preparatory splitting,

S

w

� N

n

L

max

(10)

Experimental data suggests that with S

n

= 8192,

�

L

on

� 50 and the

braching factor for non-leaf nodes

�

b � 500. Using equation 9 with the

earlier example, there are about 2158 leaf nodes, and the number of non-

leaf nodes N

n

= 3.

As this example demonstrates, the number of non-leaf nodes is very

small (3) compared to the index �le size (202MB). If L

max

= 256, the

amount of space wasted by preparatory splitting in the 202MB index

�le is less than 1kB. Thus, the amount of space wasted by preparatory

splitting is completely insigni�cant (cf. [8]).

3 Performance

The algorithm presented in this paper was implemented in C (about 3000

lines of code). The implementation was tested on an IBM RS6000 (192

MB physical memory, about 60 MIPS) and a Sun SPARCstation 1 (24 MB

physical memory, about 12 MIPS). The RS6000 was heavily loaded, and

the indexing process got only a fraction of the total CPU time. On the

SPARCstation the indexing process was the only CPU-time consuming

process.

The English test material was collected from the ClariNet newsfeed

over the years 1990 and 1991. It consists of newspaper-like articles. The

11



Eng 1 MB 10 MB 100 MB Fin 11 MB

Words 172 978 1 731 478 17 551 625 1 712 668

Number of merges 1 3 26 5

Unique keys/merge 13 509 25 434 27 898 63 161

Words/unique key/merge 12.8 22.7 24.2 5.4

Node reads 2 488 19 437 2 436

Total reads 6 514 20 757 2 519

Node writes 198 1 014 19 168 3 406

Total writes 250 1 738 28 686 4 008

Disk accesses/key 0.0015 0.0013 0.0028 0.0038

SPARCstation CPU time (min) 0:10 1:43 28:30 3:32

SPARCstation real time (min) 0:18 5:05 45:57 7:33

SPARC keys/CPU sec 17 297 16 810 10 264 8 078

SPARC keys/real sec 9 609 5 676 6 366 3 780

RS6000 CPU time (min) 0:04 0:41 1:13

RS6000 real time (min) 0:22 3:43 6:40

RS6000 keys/CPU sec 43 244 42 231 23 461

Table 1: Indexing performance.

test material contains only the bodies of the articles; all usenet news head-

ers have been removed. Some of the articles appear more than once due

to cross-posting to several newsgroups. A total of 315MB was collected;

however, only up to 100MB was used in the �nal tests due to disk space

limitations.

The Finnish test material consists of articles from Suomen Kuvalehti,

a weekly magazine, over the years 1988 and 1989. The size of the Finnish

material is about 11 megabytes.

Table 1 summarizes the results of the test runs (5MB of bu�er memory

was used in all tests). The results indicate that the SPARCstation is

able to index over 5 000 keys/second (or over 100MB/hour) even for large

databases. Earlier results with the 315MB database suggest that indexing

speed does not signi�cantly change after 100MB.

The results for the RS6000 are harder to analyze due to the heavy

loading of the machine; also, the machine had a large memory which it

could use to cache disk accesses. It could index over 40 000 words of

English text per CPU second in the 10MB test; most of the CPU time

was spent collecting and sorting the keys in memory.

In all of the above tests, only about 0.003 disk accesses were needed

12



Bu�er memory size 300kB 1MB 2 MB 5 MB

Number of merges 86 18 8 3

Node reads 16 405 3 359 1 468 500

Total reads 16 799 3 446 1 510 523

Node writes 16 907 3 934 2 027 1 017

Total writes 17 999 4 720 2 768 1 738

Disk accesses/key 0.020 0.005 0.002 0.001

RS6000 CPU time (min) 1:36 0:54 0:46 0:42

RS6000 real time (min) 10:24 4:15 3:20 2:54

Table 2: The e�ect of bu�er memory size on indexing speed (10MB En-

glish corpus).

per key. This compares very favorably with conventional B-tree insertion

algorithms, which typically require one to three disk accesses per key

{ the new algorithm is about 1 000 times faster than the conventional

algorithms.

The e�ect of bu�er memory size on indexing speed is studied in table

2. All test were run on an IBM RS6000 using the 10MB English corpus.

The results in table 2 could be summarized by saying that the size of

bu�er memory a�ects indexing speed almost linearily. The reason for this

is that bu�ering the keys in memory takes about constant time regardless

of the number of merge phases, but the merge phases will have to access

almost every node of the index regardless of bu�er memory size. The

number of merge phases is linearily determined by bu�er memory size,

and their duration is fairly constant (although it does increase with index

�le size; however, for the 100MB index, about 90 percent of the �le size

consists of continuation records and thus the growth is fairly slow).

The algorithms in [3] and [18] use similar methods, and are able to

obtain most of the speed improvements. However, their algorithms do

not address concurrent operation. The optimization presented in section

2.4 improves over their methods by a factor of two or three, and avoiding

a full search from the root for every node results in further speedups.

4 Conclusion and further research

A very fast B-tree insertion algorithm has been presented. The algo-

rithm allows concurrent access to the index �le; previous group update

algorithms have not addressed concurrency. The algorithm improves in-

13



dexing speed by a factor of about 1000 over conventional B-tree insertion

algorithms, and reduces CPU time usage by 90 percent compared to ear-

lier group update algorithms by incrementally constructing new versions

of leaf nodes.

It was also shown that top-down rebalancing does not cause a signif-

icant space penalty, and that the pre�x omission technique [1] does not

result in signi�cant space savings in large indexes.

The present algorithm is based on top-down rebalancing of the B-tree.

B

link

-trees [11] or relaxed balance schemes [15, 5, 13] could probably be

used to improve the behaviour of the new algorithm in high concurrency

environments; however, for most applications of full-text databases even

the current level of concurrency would be quite su�cient.

References

[1] Choueka, Y., Fraenkel, A., Klein, S. Compression of Concordances in

Full-Text Retrieval Systems, Proc. ACM SIGIR 1988, pp. 597{612.

[2] Comer, D. The Ubiquitous B-tree, ACM Computing Surveys, Vol.

11, No. 2, 1979, pp. 121{137.

[3] Cutting, D., Pedersen, J. Optimizations for Dynamic Inverted Index

Maintenance, Proc. ACM SIGIR 1990, pp. 405{411.

[4] Faloutsos, Cristos. Access Methods for Text, ACM Computing Sur-

veys, Vol. 17, No. 1, 1985, pp. 49{74.

[5] Goodman, N., Shasha, D. Semantically-based Concurrency Control

for Search Structures, Proc. ACM Principles of Database Systems

1985, pp. 8{19.

[6] Guibas, L. J., Sedgewick, R. A Dichromatic Framework for Balanced

Trees, Proc. 19th IEEE Symposium on Foundations of Computer

Science 1978, pp. 8{21.

[7] Johnson, T., Shasha, D. Utilization of B-trees with Inserts, Deletes

and Modi�es, Proc. ACM Principles of Database Systems 1989, pp.

235{246.

[8] Keller, A. M., Wiederhold, G. Concurrent Use of B-trees with

Variable-Length Entries, ACM SIGMOD Record, Vol. 17, No. 2,

1988, pp. 89{90.

14



[9] Koskenniemi, Kimmo. TWO-LEVEL MORPHOLOGY: A General

Computational Model for Word-Form Recognition and Production.

Doctoral dissertation. Publications of the Department of General

Linguistics, University of Helsinki, No. 11, 1983.

[10] Kwong, Y. S., Wood, D. Concurrent Operations in Large Ordered In-

dexes, Proc. International Symposium on Programming, Paris, April

1980, pp. 207{222.

[11] Lehman, P. L., Yao, S. B. E�cient Locking for Concurrent Opera-

tions on B-trees, ACM Transactions on Database Systems, Vol. 6,

No. 4, 1981, pp. 650{670.

[12] Mond, Y., Raz, Y. Concurrency Control in B

+

-trees Databases Using

Preparatory Operations, Proc. VLDB 1985, pp. 331{334.

[13] Nurmi, O., Soisalon-Soininen, E., Wood, D. Concurrency Control in

Database Structures with Relaxed Balance, Proc. ACM Principles of

Database Systems 1987, pp. 170{176.

[14] Sacks-Davis, R., Kent, A., Ramamohanarao, K. Multikey Access

Methods Based on Superimposed Coding Techniques, ACM Trans-

actions on Database Systems, Vol. 12, No. 4, 1987, pp. 655{696.

[15] Sagiv, Y. Concurrent Operations on B*-Trees with Overtaking, Jour-

nal of Computer and System Sciences, Vol. 33, 1986, pp. 275{296.

[16] Sedgewick, R. Algorithms. Addison-Westley, 1984.

[17] Srinivasan, V., Carey, M. J. On-Line Index Construction Algo-

rithms, Computer Sciences Technical Report #1008, University of

Wisconsin-Madison, March 1991.

[18] Srivastava, J., Ramamoorthy, C. V. E�cient Algorithms for Main-

tenance of Large Database Indexes, Proc. IEEE Conf. on Data Engi-

neering 1988, pp. 402{408.

15


