
Concurrent Shadow Paging: A New Direction for Database Research

Tatu Yl�onen

Laboratory of Information Processing Science

Helsinki University of Technology, SF-02150 Espoo, Finland

E-mail: ylo@cs.hut.�

Abstract

In this paper we present several new ideas about con-

current shadow paging as a crash recovery method in

databases. We show how to use shadow paging in a

multi-user environment and describe several optimiza-

tions and ideas which signi�cantly improve the perfor-

mance and general usability of shadow paging, making

it very competitive to other methods in crash recov-

ery. Shadow paging with our optimizations appears to

be much faster than log-based solutions, and it would

seem to be very generally applicable. We also present

some new, potentially very useful ideas which can be

e�ciently implemented with shadow paging but not

with logging.

1 Introduction

The idea of shadow paging is to never overwrite valid

data. A page table is used to map logical page num-

bers to physical page numbers, and modi�ed pages

are always written to unused parts of the database.

The page table is updated atomically at transaction

commit to reect the new state of the database. This

allows arbitrary atomic transactions.

The original idea of shadow paging was presented

in [16]. It was implemented in the System R database

manager, which supported concurrent operation using

a complicated multi-user shadow paging system with

logs on directory pages [6]. Some other approaches to

concurrent operation were listed in [28]. However, in

general, shadow paging was considered inappropriate

for large multi-user systems [6, pp. 239{240].

A simpler multi-user version of shadow paging was

presented in [2]. However, in comparison with log-

based methods and di�erential �les [2, 3], its per-

formance was found inferior. The primary overhead

turned out to be updating and indirection through the

page table and the root pointer.

In [9, 10], the overhead due to root pointer updates

and page table I/O was reduced by committing several

transactions simultaneously as a batch. Their experi-

mental results indicated that shadow paging was bet-

ter than logging in some environments, but in general

logging still performed better. Most of the overhead

in shadow paging was caused by page table reads.

Currently, most major database systems use logging

[18], and there has been little work on shadow paging

for several years. However, memory sizes and cor-

respondingly cache sizes have increased signi�cantly,

and it is now quite reasonable to keep the entire page

table of even a very large database in main memory.

For example, assuming 8 kB pages and 4-byte page

table entries, the page table is 50 kB for a 100 MB

database and 50 MB for a 100 GB database. The cost

of the main memory needed to hold the page table

is on the order of one percent of the cost of the disk

space for the database.

Even conventional shadow paging performs fairly

well when the page table is in main memory [2, 10].

The ideas in this paper speed up writes by a factor

of ten, not only compensating for the page table up-

dates but also making shadow paging potentially much

faster than update-in-place solutions. We also present

several other enhancements and new ideas which sig-

ni�cantly improve the usefulness of shadow paging.

2 Concurrent Shadow Paging

The presentation of shadow paging here di�ers some-

what from that in [9, 10]; however, most of the ba-

sic ideas are identical. The physical structure of the

database is illustrated in �gure 1.

The database has a page table pointer, which con-

tains the address of the page table on disk. The page

table pointer points to a valid page table at all times

and is updated atomically. We also use the same page

to hold other rapidly changing information, and call

the whole page the page table pointer.

The page table forms a mapping from logical page

numbers to physical page numbers. There is a physical

page for each allocated logical page number. The page

table on disk is called the shadow page table. We do

not have a \current" page table represented explicitly;

instead, each transaction has its own incremental page

table [2, 13, 17].

The incremental page table is conceptually a list of

changes to the page table. Each entry in the incre-

mental page table has the form hL;P

old

; P

new

i, where

L is the logical page number, P

old

is the old physical

page number corresponding to the logical page, and

P

new

is the new physical page number.

1



Page Table

Pointer

Data PagesPage Table Pages

Figure 1: Shadow paging �le structure.

To use shadow paging in a multi-user environment,

we make all reads lock the accessed logical page in

shared mode, and all writes lock the logical page in

exclusive mode. Shared locks can be released when

the application requests to commit the transaction,

and exclusive locks when the transaction has actually

committed. (This is e�ectively two-phase locking.)

Since the incremental page table contains entries only

for modi�ed pages, and modi�ed pages are exclusively

locked, we can guarantee that no page is ever in more

than one incremental page table.

When an application requests to commit a trans-

action, the transaction is marked as partially com-

mitted. The database system will periodically (e.g.

ten times a second, or when processing of the previ-

ous commit batch has completed) take all partially

committed transactions, and commit them as a batch.

Since no page can be in more than one incremental

page table, we know that there are no conicts be-

tween the transactions. The changes made by them

are installed in the global page table, allocating new

pages for modi�ed page table pages (the page table

itself is shadowed). All pages modi�ed by the transac-

tion and the modi�ed page table pages are then ushed

to disk. When they have reached the disk, the page

table pointer is written to two adjacent physical pages

(to implement atomic update). When it has reached

the disk, all transactions in the batch have commit-

ted and a new batch can begin. The e�ect of commit

batching has been studied for shadow paging in [10]

and for logging in [4, 15, 7].

There is no need for garbage collection. If a trans-

action is aborted, the \new" physical pages in its in-

cremental page table are put back to the free list, and

no further action is needed. After a transaction has

committed, the \old" physical pages in its incremen-

tal page table are put to the free list, as well as old

versions of the modi�ed page table pages.

3 Allocating Adjacent Physical

Pages in Commit

Allocation of physical page numbers can be delayed

until the transaction commits, or the modi�ed page is

ushed from the cache. It is possible to allocate all

pages needed during a commit batch as a contiguous

region (or a two-dimensional array on multiple disks

[27]). This means that there is no need to seek be-

tween writes, and the changes and page table updates

made by several transactions can be written to disk

sequentially. The speedup on writes is on the order of

a factor of ten.

1

This optimization contradicts the usual attempt to

keep the logical-to-physical mapping linear, or at least

approximately linear [2, 10]. In update-in-place sys-

tems, every write eventually results in a seek and a

write to the original location (except in hot spots

where multiple writes to the same data may be com-

bined). In dynamicallymapped systems (shadow pag-

ing), it is possible to allocate a contiguous region and

avoid almost all of the seeks and rotational latencies.

In terms of I/O resources, the cost of a typical transac-

tion is reduced to almost a half (reads are una�ected,

but writes become very cheap), almost doubling the

rate of transactions per second that can be supported

by the same equipment. Moveover, caching can be

much more e�ective if writes are cheap: caching only

a�ects reads, and writes must still eventually go to

disk (except in hot-spots). If writes are as expensive

as reads and half the operations are writes, we can

at most about double the performance by improving

caching. If writes only cost a tenth of the cost of reads,

performance can be improved by a factor of ten.

Log-based �le systems [20, 24] are based on a similar

optimization.

4 Clustering

An important problem in databases is clustering re-

lated data together. Clustering within a page is eas-

ily achieved; however, since the whole idea of shadow

paging is to always write a page to a new location,

clustering between pages is more di�cult. Approaches

which attempt to keep the logical-to-physical mapping

approximately linear [2, 10] are not compatible with

our write optimizations. The problem is at worst with

large multi-megabyte objects. In the worst case, every

page of a large object could require a separate seek.

Clustering for large objects can be achieved by com-

bining several adjacent physical pages into a multi-

page. Multipages are only a logical-level concept;

they are made of adjacent normal-sized physical pages.

Page table entries contain the size (the number of con-

tiguous physical pages) of each logical page in addition

to the address of the (�rst) physical page. Multipages

can be fairly large and large objects can be constructed

from relatively few multipages. The multipages form-

ing a large object can be stored on di�erent disk drives,

allowing parallel reading from multiple drives, analo-

gously to the two-dimensional �le system of [27].

The use of multipages requires that there is a su�-

cient amount of free space available in the database so

that contiguous free areas can be found. One general

1

For a disk with 15 ms seek time (including latency) and 3

MB/sec transfer rate, the speedup is by a factor of 45 for 1 kB

pages, by a factor of 12 for 4 kB pages, and by a factor of 6 for

8 kB pages.

2



way to �ght fragmentation of free space is to have a

thread combine free pages into larger areas by moving

used pages adjacent to a larger free area to �ll smaller

free areas. The moving task is very simple because all

modi�cations are local, a�ecting only a single logical

page at a time. The logical page number of a physical

page can be found by a simple reverse mapping table

in main memory (the table can be fairly large, on the

order of the size of the page table).

Clustering is also important for scanning large ta-

bles. Unlike large objects, a table usually consists of a

large number of small independently updatable data

items. Since updating a part of a multipage requires

the entire multipage to be written to a new location,

multipages are not appropriate for structures where

small data items are updated frequently. There is

a tradeo� in multipage size between the e�ciency of

small updates and the e�ciency of sequential scans.

It is perfectly feasible to select the multipage size on a

per-table or per-object-type basis. Also, since writes

are very cheap in the concurrent shadow paging envi-

ronment, it is possible to maintain more indexes than

in update-in-place systems at the same cost, reducing

the need for sequential scans.

5 Automatic I/O Load Balanc-

ing

Most of the disk I/O in a concurrent shadow paging

system is caused by reads. Writes are fairly long se-

quential bursts followed by a page table pointer write.

Reads cannot easily be balanced between disks; how-

ever, since we can freely choose where to write a page,

we can write to the disk that is the most idle one. Since

the page is at the same time removed from its previous

location (likely to be a more busy disk), future load of

the busy disk is reduced and the load of the more idle

disk is increased. With suitable parameterization (to

avoid oscillations), automatic load balancing between

disks can be achieved.

The page table pointer must reside at a �xed loca-

tion. However, it is possible to have several page table

pointers (e.g., one on each disk) if each pointer con-

tains a timestamp indicating the sequence number of

the last commit to that pointer. At startup time, the

system selects the pointer with the highest sequence

number. At commit time, the pointer on the most idle

disk can be selected.

6 Early Releasing of Locks

Normally, shared locks can be released when a transac-

tion is partially committed, and exclusive locks when

the transaction is fully committed. However, we have

only one commit batch active at a time, and when

a new batch begins, all partially committed transac-

tions will be included in the batch. This means that

when a transaction partially commits, no other trans-

action can reach partially committed state later but

get fully committed earlier. Thus, we can release ex-

clusive locks as soon as the transaction is partially

committed and trust that no transaction that has ac-

cessed the uncommitted data can commit its modi-

�cations without the earlier transaction committing.

This signi�cantly reduces the time exclusive locks are

held, allowing more concurrency. If full persistence

is not required by the application, successful commit

can be reported to the application immediately; other-

wise successful commit can be reported after the next

commit batch has completed.

A side-e�ect of this optimization is that later trans-

actions may see uncommitted data. It is guaranteed

that the data will not get explicitly aborted, and if it

gets implicitly aborted by a system crash, any trans-

actions that have used that data will also get aborted

by an implicit cascading rollback. Transactions might

display uncommitted data to the user before they die,

but since this can only occur in connection with a sys-

tem failure, this is acceptable in most applications.

A similar optimization has been used in some log-

based implementations (e.g. [4, p. 7]).

7 Fine-Granularity Locking

Fine-granularity locking has been used in several

database systems [23, 19, 18], although many commer-

cial systems still use page or table level locking. We

are not aware of any previous work on �ne-granularity

locking with shadow paging.

The major problem with �ne-granularity locking is

that we would like to allow multiple transactions to

modify di�erent parts of a page, and it must be pos-

sible to individually commit or abort each of these

modi�cations. Thus, the transactions cannot share a

copy of the page and install it in the page table when

one of them commits. Instead, each transaction must

keep its changes separately, and only at commit time

store them into the page. The changes can be kept,

for example, on a list attached to the transaction, in-

dexed by page number and byte range or an object

identi�er.

This approach to �ne-granularity locking works well

for small transactions; however, large transactions

maymodifymany objects (e.g., incrementing the value

of a �eld in every record of a table). Storing all changes

in main memory may not be feasible, and commit

would become very slow because the changes would

need to be installed to their respective pages at com-

mit time. A solution is to use �ne-granularity lock-

ing for all new transactions, and after a transaction

has modi�ed a certain number of objects, begin to use

page-level locking for the transaction. A large transac-

tion will often hold a table-level lock, and thus resort-

ing to page-level locking would not reduce concurrency

in this case.

3



CurrentSnapshot7Snapshot6Snapshot5Snapshot4 state

Figure 2: Snapshots represent consistent database

states as of some time in the past.

8 Snapshots

It is possible to take a snapshot [1] of the entire

database by saving the address of the page table and

preventing freeing of pages that are in use by the

snapshot. If the database is accessed using the saved

page table address, a fully consistent snapshot of the

database can be seen, and that view will not change

as long as we can guarantee that no pages referenced

by the snapshot are freed.

Taking (and dropping) a snapshot is very e�cient

(from a few microseconds to a millisecond independent

of database size). We can take an arbitrary number

of snapshots at di�erent times, and they will all be

consistent as long as their pages are not freed. Since a

shadow paging system never modi�es accessible pages,

postponing freeing of updated pages is su�cient to

maintain the consistency of all snapshots. Later in

this paper we will describe an e�cient algorithm for

deducing when a page can be freed in the presence of

snapshots.

Snapshots can be used to implement consistent

dumping of the database, as well as for implementing

optimistic multiversion concurrency control. Read-

only transactions can be implemented by taking a

snapshot and reading from the snapshot.

The idea of snapshots is illustrated in �gure 2.

9 Multi-Level Incremental

Dumping

Many algorithms have been presented for on-the-y

dumping of log-based databases [25, 22, 11, 26, 8].

Most of the algorithms are based on taking a fuzzy

dump of the database and dumping the log records of

the changes that have been made during the dump.

[22] describes an algorithm which can be used to di-

rectly take a consistent dump using locking (and cor-

respondingly, possibly causing some transactions to be

aborted).

Some of the earlier algorithms can support incre-

mental dumping by having a bit in modi�ed pages

which is set whenever the page is modi�ed [8] (this

scheme can also be generalized to multi-level dump-

ing). However, most of the existing approaches

to incremental dumping require scanning the entire

database even if only a few pages have changed. This

is very costly for disk-based databases. [26] presents

an algorithm where this is not necessary, but their al-

gorithm is too space-consuming for general use.

With shadow paging, it is possible to obtain a

transaction-consistent dump of the entire database

without disturbing normal transaction processing by

taking a snapshot of the database and reading the

database using the snapshot. No locking is needed

for the dump.

Incremental dumping can be implemented by stor-

ing in each page table entry the serial number of the

last commit batch that modi�ed the page. The serial

number can be maintained at almost no CPU over-

head, but it increases the size of the page table. Us-

ing the serial numbers as timestamps, it is possible to

dump only those pages that have changed after a cer-

tain point of time. Normally the reference time is the

timestamp of the last full dump or the previous incre-

mental dump (the timestamp of a dump is the serial

number of the last commit that had been done before

the snapshot for the dump was taken).

Incremental dumping with shadow paging is highly

e�cient because only the cached page table needs to be

scanned, and only the pages that are actually dumped

need to be read. Only the logical database is dumped,

not the unused physical pages.

10 Multiple Database Versions

A snapshot can also be seen as a copy-on-write copy of

the database. As long as freeing of pages used by other

copies can be prevented, we can run arbitrary trans-

actions against a snapshot, and even take a new snap-

shot of the modi�ed version. In the following discus-

sion we will call a snapshot a version of the database.

Note that database versions di�er from the more con-

ventional object versions in that they are global [12].

Object versions can be used together with database

versions if desired.

The versions of a database form a tree (�gure 3).

From the user's point of view, the versions are fully

independent of each other. Transactions need only

be synchronized against other transactions within the

same version, any version can be dropped at any time,

and new versions may be forked o� any existing ver-

sion. There is no need to consider some version the

\primary" version of the database { it is fully feasible

to drop the previous primary version and start using

another version of the database as the primary one.

Multiple versions can be made permanent in the

database. One possible implementation is to have an

atomically updatable master pointer instead of a page

table pointer. The master pointer would point to sev-

eral page table pointer pages (remember, the page ta-

ble pointer may also contain other data in addition to

the actual address of the page table). The page table

pointers would reside in normal shadowed database

storage.

Multiple permanent versions could be very useful

in many applications. Examples include large design

databases, where several design directions could be

considered simultaneously, poor ones dropped and new

forks created as needed. An other application could be

asking \what if" questions in a large database without

4



Snapshot4 Snapshot9

Snapshot25
Version3

Version2

Figure 3: Versions of a database form a tree. Implicit

snapshots are retained of all nodes with multiple chil-

dren.

a�ecting the original database. In very large knowl-

edge bases, multiple versions could be used to imple-

ment interesting searching algorithms. The possibili-

ties for interesting applications are numerous and yet

unexplored.

It has not been possible to support multiple inde-

pendently updatable database versions e�ciently with

existing databases. With concurrent shadow paging,

creating and dropping database versions are very light

operations (in the microseconds to milliseconds range).

The algorithm for determining when a physical page

can be freed is based on the fact that if a physical page

is referenced in one version of the database, it can only

occur in the same logical location in other versions.

Moreover, if versions with children are never modi�ed

but instead a new version is (automatically) created

when necessary, only the immediate parent and direct

children need to be checked when freeing pages.

Dropping a version is in principle equivalent to free-

ing all of its pages. However, as long as the version

has ancestors, only the modi�ed pages can be with-

out other references, and thus only the modi�ed pages

need to be checked. Unmodi�ed snapshots never con-

tain any pages of their own and thus dropping them

never causes any pages to be freed unless all ancestors

have been dropped.

11 Two-Phase Commit in Dis-

tributed Databases

A common method for implementing transactions in

distributed databases is two-phase commit. Imple-

menting two-phase commit requires that the changes

made by a transaction can be saved so that they sur-

vive a possible crash but can still be undone. The

algorithm presented here resembles that in [13, 17],

but there are also substantial di�erences.

The basic idea is to store the incremental page ta-

ble on disk in the �rst phase of commit, and leave a

pointer to the incremental page table in the page table

pointer. If a crash occurs, the incremental page table

can be recovered from the copy on disk and the coor-

dinator queried about the fate of the transaction. In

the second phase of commit, the transaction is com-

mitted normally and the incremental page table on

disk is freed (atomically, in the same commit batch).

Processing of global transactions can be done concur-

rently with processing of local transactions.

11.1 First Phase

When a node is requested to do the �rst phase of com-

mit, all shared locks are released immediately. The in-

cremental page table of the transaction and any mod-

i�ed pages are written to disk. The saved information

must be su�cient to reconstruct the incremental page

table and locks after a crash, and to identify the coor-

dinator of the transaction and the transaction within

the coordinator. During processing of the next com-

mit batch, a pointer to the incremental page table on

disk will be added to the page table pointer. When

the page table pointer has been stored on disk, the

system reports \ready" to the coordinator.

The algorithm can be extended to handle �ne-

granularity locking by storing also the modi�ed ver-

sions of objects.

11.2 Second Phase

The second phase is executed like any transaction com-

mit. The pointer to the incremental page table on disk

is removed from the page table pointer during the com-

mit and the disk space is freed.

If the coordinator decided to abort the transaction,

the pointer to the incremental page table on disk is

removed from the page table pointer during the next

commit batch and the disk space is freed. Otherwise

the abort is done normally.

11.3 Crash Recovery

During crash recovery, the system must read the incre-

mental page tables of partially processed global trans-

actions from disk. The pages mentioned in the in-

cremental page tables must be counted as used when

extracting the free list from the page table. All exclu-

sive locks on logical pages modi�ed by the transactions

are restored, and the system must query the coordi-

nator of each global transaction about the fate of the

transaction. Normal transaction processing can begin

when the locks held by recovered global transactions

have been restored.

The coordinator of a global transaction must keep

enough information to answer queries about the fate of

the transaction, e.g. by keeping a list of global transac-

tions that have been partially (phase one) committed

but that have not yet been reported fully committed

by all other machines. The list of active global trans-

actions can be kept in the page table pointer, with

extension to disk.

5



12 Media Recovery and Log-

ging

Concurrent shadow paging does not use logging for

crash recovery. However, this makes media recovery

more important than in log-based systems where the

log can be used to bring the system up to date from

the last dump.

Shadow paging is very well suited for high concur-

rency environments with many relatively small disks.

A very natural solution to media recovery is to use a

RAID disk system [21, 27].

Shadow paging supports consistent multi-level in-

cremental dumping without disturbing normal trans-

action processing. This allows dumping even a very

large database quite frequently { for example, a full

dump once a week, an incremental against that once

a day, an incremental against the daily dump once

an hour, and an incremental against the hourly dump

every ten minutes.

Logs are sometimes used for other purposes besides

recovery. Maintaining logs is possible also in a shadow

paging system. The log can, for example, be imple-

mented as a large object to which transactions ap-

pend a log record before they change the value of a

data item. The log resides in normal logical pages and

can be manipulated by transactions like any other ob-

ject. Appending of log records probably needs built-in

support to avoid concurrency bottlenecks and to ap-

pend commit and abort records. The tail of the log is

ushed to disk as part of processing a commit batch,

and the log is always in a consistent state with the

database. Logging would cause very little overhead to

transaction processing, as it only adds a little more

data to the sequential write.

13 Main-Memory Databases

Concurrent shadow paging may also be interesting in

main memory databases. Most current main memory

databases use fuzzy dumps with some form of disk-

based logging [8, 5, 14, 26]. With concurrent shadow

paging, a main memory database can be seen as a

database with a 100 percent cache hit rate. Since

disk I/O in such an environment consists mostly of

sequential writes, fairly high performance can be ex-

pected (as illustrated in table 3). Locks never need to

be held during disk I/O, and if full persistence is not

required, transactions can commit without waiting for

any disk I/O [4] (section 6).

An advantage in using shadow paging instead of log-

based approaches is faster recovery time. Since the

main memory database is only a large cache, the sys-

tem is operational as soon as the software has been

started and the free list extracted. It is not necessary

to wait for the database to be loaded into memory

and log entries to be processed; instead, transaction

processing can be started immediately (although at

reduced performance), reaching full performance lev-

N

p

number of pages in the database

N

psz

page size

N

ptesz

page table entry size

N

ptp

=

N

p

N

ptesz

N

psz

number of page table pages

N

d

number of disks

U

io

I/O time utilization factor

t

aio

= N

d

U

io

available I/O time

t

s

average seek time (including latency)

N

xps

disk transfer rate bytes/sec

t

x

=

N

psz

N

xps

page transfer time (read or write)

p

ch

cache hit probability in reads

N

tps

transactions per second

N

cps

commit batches per second

N

tpc

=

N

tps

N

cps

transactions per commit batch

N

ur

user read requests per transaction

N

uw

user write requests per transaction

N

ptw

page table writes per commit batch

t

c

average I/O time per commit batch

t

t

average I/O time per transaction

Table 1: Notations used in the performance analysis.

els when the entire database is in memory. Similarily,

the system would not be signi�cantly a�ected if the

database was a little larger than the memory. This

would make the system more robust in the face of a

growing database or part of the memory being tem-

porarily o�ine due to a hardware failure. Interesting

performance tradeo�s might also be seen in applica-

tions where a fairly large part of the database is ac-

cessed very frequently, but then there is a vast body

of bulk data (images, text etc.) that is accessed less

frequently. In such an application, transactions to the

frequently accessed part would be done at main mem-

ory speeds, still allowing easy access to the parts of

the database that cannot be kept in main memory.

14 Performance

Using the notations in table 1 and assuming uni-

form distribution of writes in the logical database, the

number of page table pages written in a commit batch

is

N

ptw

= N

ptp

� N

ptp

(1�

1

N

ptp

)

N

tpc

N

uw

where the latter term corresponds to the probability

that a user write already had its page table page writ-

ten earlier in the same batch.

In addition to page table writes, a commit batch

writes the modi�ed data pages and the root pointer.

We assume that all user data writes access separate

pages. If a su�ciently large contiguous region of free

space can be found, only two seeks will be needed (one

for the data and page tables, and one for the page ta-

ble pointer which is written twice to implement atomic

write). Thus, the I/O time needed to execute a com-

6



mit batch is

t

c

= t

s

+ (N

tpc

N

uw

+ N

ptw

)t

x

+ t

s

+ 2t

x

In addition to the commit, a transaction also uses

I/O resources for reading. Some user reads are satis-

�ed from the cache and some result in physical reads.

The cost of the commit batch is divided among all

transactions participating in the batch. Thus, the av-

erage I/O time per transaction is

t

t

= (1 � p

ch

)N

ur

(t

s

+ t

x

) +

t

c

N

tpc

Assuming the transactions per second rate is only

limited by I/O time,

N

tps

=

t

aio

t

t

(1)

Denoting N

tps

with x and using the constants

a

1

= N

cps

N

ptp

t

x

+ 2N

cps

(t

s

+ t

x

)� N

d

U

io

a

2

= (1� p

ch

)N

ur

(t

s

+ t

x

) +N

uw

t

x

a

3

= �N

cps

N

ptp

t

x

a

4

= (1�

1

N

ptp

)

N

uw

N

cps

we can write the equation as

a

1

+ a

2

x+ a

3

a

x

4

= 0 (2)

This can be solved by elementary numerical meth-

ods. Since 0 < a

4

< 1 and ja

3

j � ja

1

j in all practical

cases, the equation is close to linear, and the perfor-

mance of the system scales quite linearly when more

disks are added.

Table 2 displaysN

tps

in a disk-based database appli-

cation for di�erent numbers of disks and various cache

hit rates. Small transactions (two reads, two writes)

were analyzed (U

io

= 0:9, t

s

= 0:015, N

psz

= 4096,

N

xps

= 3000000, N

cps

= 5, N

ur

= 2, N

uw

= 2).

The behaviour at high cache hit rates is very inter-

esting. This is illustrated in table 3 which shows N

tps

for various page sizes and numbers of disks (U

io

= 0:9,

t

s

= 0:015, N

xps

= 3000000, N

cps

= 5, N

ur

= 2,

N

uw

= 2, p

ch

= 1:0). The �gures for higher num-

bers of disks are mostly theoretical, as performance

would be limited by available CPU time, which is not

considered in our current model. However, concurrent

shadow paging does scale very nicely to shared mem-

ory multiprocessors, so some of the �gures may not be

as unrealistic as they �rst appear.

15 Conclusion and Further Re-

search

We have presented several new ideas which signi�-

cantly improve both performance and applicability of

shadow paging in general-purpose databases. Based

p

ch

N

d

= 1 5 10 100

0.00 19 114 234 2488

0.25 25 146 300 3234

0.50 34 202 420 4619

0.60 40 240 500 5575

0.70 49 295 620 7029

0.80 62 384 821 9509

0.90 86 557 1235 14692

0.95 107 730 1673 20198

1.00 143 1088 2647 32303

Table 2: TPS rate for di�erent numbers of disks and

cache hit rates.

N

psz

N

d

= 1 5 10 100

512.00 1104 6643 14121 225185

1024.00 555 3463 7683 122074

2048.00 280 1880 4460 63419

4096.00 143 1088 2647 32303

8192.00 74 644 1466 16298

Table 3: TPS rate for di�erent numbers of disks and

page sizes with 100 percent cache hit rate (a main-

memory database).

on our preliminary research, shadow paging seems

to o�er everything that log-based approaches o�er.

It also appears to be potentially much faster than

any update-in-place method. In many applications,

shadow paging is much more exible than log-based

approaches. Multiple database versions and other new

ideas may �nd interesting applications on many �elds.

We feel that concurrent shadow paging de�nitely de-

serves more research, and has a good chance of improv-

ing the performance of many database applications by

a factor of two or more.

The work on concurrent shadow paging is just be-

ginning, and all results in this paper are preliminary.

Much theoretical and experimental work is still needed

to substantiate many of the expectations in this paper.

We have not yet fully analyzed how the di�erent ideas

interact with each other. The ideas must be re�ned,

analyzed and implemented, and no doubt many new

ideas will come up.

We are in the process of implementing concurrent

shadow paging. We have implemented a very simple

prototype, and are in the process of building a more

complete system. We are implementing the new ideas

in practice, and will evaluate their performance and

compare them to log-based approaches both experi-

mentally and analytically.

Acknowledgements

Many of the ideas presented in this paper have

arisen as a result of discussions with Heikki Suon-

7



sivu, Tero Kivinen, Johannes Helander, Kenneth Ok-

sanen, Heikki Saikkonen, and Eljas Soisalon-Soininen.

I thank them for many fruitful discussions, sugges-

tions, and comments.

References

[1] M. E. Adima and B. G. Lindsay. Database snap-

shots. In Very Large Data Bases, pages 86{91,

1980.

[2] R. Agrawal and D. J. DeWitt. Integrated concur-

rency control and recovery mechanisms: Design

and performance evaluation. ACM Transactions

on Database Systems, 10(4):529{564, 1985.

[3] R. Agrawal and D. J. DeWitt. Recovery architec-

tures for multiprocessor database machines. In

ACM PODS, pages 131{145, 1985.

[4] D. J. DeWitt, R. H. Katz, F. Olken, L. D.

Shapiro, M. R. Stonebraker, and D. Wood.

Implementation techniques for main memory

databases. In ACM SIGMOD, pages 1{8, 1984.

[5] M. H. Eich. A classi�cation and comparison of

main memory database recovery techniques. In

IEEE Data Engineering, pages 332{339, 1987.

[6] J. Gray, P. McJones, M. Blasgen, B. Lindsay,

R. Lorie, T. Price, F. Putzolu, and I. Traiger.

The recovery manager of the System R database

manager. ACM Computing Surveys, 13(2):223{

242, 1981.

[7] R. Hagmann. Reimplementing the Cedar �le sys-

tem using logging and group commit. In Proc.

11th ACM Symposium on Operating System Prin-

ciples, pages 155{162, 1987. Published as ACM

Operating Systems Review, Vol. 21, No. 5, 1987.

[8] R. B. Hagmann. A crash recovery scheme for a

memory-resident database system. IEEE Trans-

actions on Computers, C-35(9):839{843, 1986.

[9] J. Kent, H. Garcia-Molina, and J. Chung. An

experimental evaluation of crash recovery mech-

anisms. In ACM PODS, pages 113{121, 1985.

[10] J. M. Kent. Performance and Implementation Is-

sues in Database Crash Recovery. PhD thesis, De-

partment of Electrical Engineering and Computer

Science, Princeton University, 1985.

[11] R. P. King, N. Halim, H. Garcia-Molina, and

C. A. Polyzois. Management of a remote backup

copy for disaster maintenance. ACM Transac-

tions on Database Systems, 16(2):338{368, 1991.

[12] P. Klahold, G. Schlageter, and W. Wilkes. A gen-

eral model for version management in databases.

In Very Large Data Bases, pages 319{327, 1986.

[13] B. W. Lampson and H. E. Sturgis. Crash recovery

in a distributed data storage system. Technical

report, Computer Science Lab., Xerox Palo Alto

Research Center, Apr. 1979.

[14] T. J. Lehman and M. J. Carey. A recovery al-

gorithm for a high-performance memory-resident

database system. In ACM SIGMOD, pages 104{

117, 1987.

[15] C.-C. Liu and T. Minoura. E�ect of update merg-

ing on reliable storage performance. In IEEE

Data Engineering, pages 208{213, 1986.

[16] R. A. Lorie. Physical integrity in a large

segmented database. ACM Transactions on

Database Systems, 2(1):91{104, 1977.

[17] D. A. Menas�ce and O. E. Landes. On the design

of a reliable storage component for distributed

database management systems. In Very Large

Databases, pages 365{375, 1980.

[18] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,

and P. Schwarz. ARIES: A transaction recovery

method supporting �ne granularity locking and

partial rollbacks using write-ahead logging. ACM

Transactions on Database Systems, 17(1):94{162,

1992.

[19] J. E. B. Moss, B. Leban, and P. K. Chrysanthis.

Finer grained concurrency for the database cache.

In IEEE Data Engineering, pages 96{103, 1987.

[20] J. Ousterhout and F. Douglis. Beating the I/O

bottleneck: A case for log-structured �le sys-

tems. ACM Operating Systems Review, 23(1):11{

28, 1989.

[21] D. A. Patterson, G. Gibson, and R. H. Katz.

A case for redundant arrays of inexpensive disks

(RAID). In ACM SIGMOD, pages 109{116, 1988.

[22] C. Pu. On-the-y, incremental, consistent read-

ing of entire databases. In Very Large Databases,

pages 369{375, 1985.

[23] D. R. Ries and M. Stonebraker. E�ects of lock-

ing granularity in a database management sys-

tem. ACM Transactions on Database Systems,

2(3):233{246, 1977.

[24] M. Rosenblum and J. K. Ousterhout. The de-

sign and implementation of a log-structured �le

system. In Proc. 13th ACM Symposium on Oper-

ating System Principles, pages 1{15, 1991. Pub-

lished as ACM Operating Systems Review, Vol.

25, No. 5, 1991.

[25] D. J. Rosenkrantz. Dynamic database dumping.

In ACM SIGMOD, pages 3{8, 1978.

[26] K. Salem and H. Garcia-Molina. Checkpointing

memory-resident databases. In IEEE Data Engi-

neering, pages 452{462, 1989.

[27] M. Stonebraker, R. Katz, D. Patterson, and

J. Ousterhout. The design of XPRS. In Very

Large Data Bases, pages 318{330, 1988.

[28] J. S. M. Verhofstad. Recovery techniques for

database systems. ACM Computing Surveys,

10(2):167{195, 1978.

8


