
Write Optimizations and Clustering in Concurrent Shadow

Paging

�

Tatu Yl�onen

Laboratory of Information Processing Science

Helsinki University of Technology, SF-02150 Espoo, Finland

E-mail: ylo@cs.hut.�

Abstract

Shadow paging is a method for implementing

atomic transactions in databases. In previous stud-

ies it has been found to perform rather poorly. How-

ever, many of the reasons that originally hampered

its performance have become obsolete due to tech-

nological development.

Several ideas are presented in this paper which

considerably improve the performance of shadow

paging. The page table allows all writes to be done

sequentially, resulting in very signi�cant speedups,

and variable-size pages o�er a solution to clustering

problems.

A simple performance analysis indicates that

in many common applications the performance

achieved using these optimizations can be twice or

more the performance of log-based approaches.

1 Introduction

1.1 Background

The original idea of shadow paging was presented

by Lorie [7]. It was implemented in the System R

database manager, which supported concurrent op-

eration using a complicated multi-user shadow pag-

ing system with logs on directory pages [3]. The

implementors of System R afterwards considered

shadow paging inappropriate for large multi-user

systems [3, pp. 239{240].

A simpler multi-user version of shadow paging

was presented in [1]. However, in comparison with

log-based methods and di�erential �les, its perfor-

mance was found inferior [1, 2]. The primary over-

head turned out to be updating and indirection

through the page table and the root pointer.

In [4, 5], the overhead due to root pointer up-

dates and page table I/O was reduced by commit-

ting several transactions simultaneously as a batch.

�

This research was supported in part by TEKES grant

4067/93.

Experimental results indicated that shadow paging

was better than logging in some environments, but

in general logging still performed better. Most of

the overhead in shadow paging was caused by page

table reads.

Currently, most major database systems use log-

ging [9], and there has been little work on shadow

paging for several years.

1.2 The E�ect of Increased Memory

Sizes

In the last few years, main memory sizes and corre-

spondingly cache sizes have increased dramatically,

and this development is expected to continue in the

near future. Assuming the database contains 4 kB

pages and the size of a page table entry is 4 bytes,

the size of the page table is 100 kB for a 100 MB

database and 10 MB for a 10 GB database. This

means that the entire page table can be kept in the

cache, and that mapping a page number using the

page table, which used to require a disk access, now

only requires a few machine instructions.

1.3 Concurrent Shadow Paging

The database consists of a number of disk blocks

organized as pages. Each page can hold a �xed

number of bytes, and is identi�ed by a number from

which its address on disk can be computed. These

pages will be called physical because they have a

direct representation on disk.

The levels of the database system above the

transaction manager also see the database as a col-

lection of numbered pages. These will be called log-

ical pages to distinguish them from physical pages.

High level data structures, such as those used to

implement tables, only refer to logical pages. The

relation between logical pages and physical pages is

hidden from the higher levels, and is implementa-

tion dependent. In most log-based databases, there

is a �xed one-to-one correspondence between logical

1



and physical pages. With shadow paging, however,

the mapping is not �xed but instead continually

changes as the database is modi�ed.

The mapping between logical and physical pages

is maintained using a page table. Conceptually it is

an array of physical page numbers indexed by the

logical page number. There is always a valid page

table in nonvolatile storage on disk.

Earlier implementations stored the page table in

a �xed location in stable storage, and used logs or

bitmaps to implement atomic modi�cations to the

page table [3, 7]. This makes the implementation

of concurrent transactions di�cult and requires the

use of logs on page table pages. The implementors

of System R concluded that the use of this method

for large �les was a mistake. This algorithm still

is the only one presented in many textbooks on

databases.

Another implementation was to use intention

lists [1, 6, 8]. The idea is to store the changes made

by each transaction in a per-transaction incremen-

tal page table. At commit time, the incremental

page table is �rst written to stable storage as a

precommit record, and only then are changes made

to the actual page table. If the system crashes in

the middle of updating the page table, the precom-

mit record can be used to redo and complete the

changes. In a detailed study this method was found

to perform very poorly for small transactions with

a random access pattern [1].

A third alternative is to have the page table it-

self in shadowed storage. With this method, the

database has a page table pointer in a �xed loca-

tion in stable storage. It contains the address of

the page table on disk. When a transaction mod-

i�es the database, it constructs a new page table

(without modifying any of the existing page table

pages), writes the new page table to disk, and com-

mits by atomically writing the address of the new

page table to the page table pointer. In most cases

the page table is implemented as a tree-like struc-

ture (�gure 1), and thus only modi�ed portions of

the page table need to be recreated.

Kent [5] used this method in his thesis. In his

system, every transaction has an incremental page

table which is used to store the changes made by

the transaction. The incremental page table is im-

plemented as a list of tuples hL;P

old

; P

new

i, where

L is the logical page number, P

old

is the old physi-

cal page number, and P

new

is the new physical page

number. P

old

corresponds to the global version of

the page, and P

new

corresponds to the local version

of the page.

Two-phase locking on logical pages is used for

concurrency control. To read a page, the transac-

tion �rst acquires a shared lock on the logical page.

It then looks for a corresponding entry in its in-

Data PagesPage Table Pages

Page Table

Pointer

Figure 1: The shadow paging �le structure.

cremental page table, and if not found, maps the

page using the global page table. To write a page,

a transaction must obtain an exclusive lock on the

logical page. It then checks if it already has an en-

try for the page in its incremental page table. If

so, it uses the already-existing local version of the

page. If not, it creates a copy of the page, and

adds a corresponding entry to its incremental page

table. Locking can be optimized by checking the

incremental page table �rst, as an entry can exist

there only if the corresponding page is already ex-

clusively locked.

Since a transaction must have an exclusive lock

before it can modify a page, only one transaction

can have a local version of any given logical page

and there can be no con
icts between the incremen-

tal page tables of di�erent transactions. This means

that it is possible to install the modi�cations of sev-

eral transactions into the global page table at once,

reducing the overhead due to constructing new page

tables. This can be implemented by putting all par-

tially committed transactions in a queue, and hav-

ing a separate process periodically (a few times a

second) take all transactions in the queue and in-

stall their modi�cations (local versions) to the page

table. This is called commit batching.

Incremental page tables and commit batching sig-

ni�cantly decrease the cost of updating the page ta-

ble. The cost of each page table update is divided

among several transactions, and the per-transaction

overhead decreases as the multiprocessing level in-

creases. Also, since the page table is implemented

as a tree of pages, only those parts of the page table

that are actually modi�ed (and their parent nodes)

need to be rewritten; other parts of the page table

can be shared with previous versions.

No garbage collection is needed with this method.

After a transaction has committed, it can free the

\old" versions of the pages (including page table

pages) that it has modi�ed. If a transaction needs

to be aborted, all that has to be done is to free

the \new" versions in its incremental page table.

2



No modi�cations need to be done to the global

database in this case.

The free list (or bitmap) of physical pages can

either be extracted from the page table on disk at

startup time, or be stored on disk at every commit.

It is possible to compute the permanent free list and

write it to disk at every commit batch. Because of

the write optimizations of section 2, it would not

cause signi�cant I/O overhead. However, the CPU

overhead usually makes it undesirable to compute

and store the physical free list at every commit. In

most applications extracting the free list from the

page table at startup time is preferable [5].

2 Write Optimizations

In most database systems, the mapping between

logical and physical pages is �xed. A �xed mapping

has the advantage that maintaining a page table is

not required, and it allows e�cient clustering of re-

lated logical pages. On the other hand, in systems

with a �xed mapping, each modi�ed data page must

eventually be written back to its original location.

Since modi�cations are usually scattered through-

out the entire database, each modi�cation will typ-

ically require a seek to the desired location on disk.

This need is not removed by delaying or batching

writes (except in hot spots), since the database is

usually very large compared to the number of pages

modi�ed, and thus the density of writes is still low.

Shadow paging allows the database system to

choose where to write a modi�ed page. The sys-

tem can choose to write all modi�ed pages in a con-

tiguous area on disk, or just near each other. This

allows many pages to be written with a single seek.

A similar idea is used in log-based �le systems

[10, 12, 13], where long writes are used to improve

write performance.

2.1 Analysis

A typical low-cost disk currently has about 15 ms

average access time (t

a

) and 4 MB/s sustained data

transfer rate (R). The time required to transfer a

page of data t

x

=

S

R

, where S is the size of the page

in bytes. If a seek is required, the time to read or

write S bytes is t

a

+

S

R

. If many adjacent pages

are read or written, no physical seek is needed ex-

cept for the �rst page. Similarly, if one page is read

or written, the next is skipped, and the next writ-

ten, no seek is needed for the latter page, but extra

transfer (rotational latency) time must be counted

for the skipped page.

When a seek is required for each page, the time

required to transfer N pages of size S is N (t

a

+

S

R

).

When a seek is required for the �rst page only, the

1

24

816

326412
825

651
2

10
24

∞

Pages written

512

2048

8192

Pa
ge

 s
iz

e

1

10

100

1000

Sp
ee

du
p

Figure 2: Speedup factor F for di�erent page sizes

S and transfer lengths N .

S 512 1024 2048 4096 8192

F

1

124 62 32 16 9

Table 1: Limit of potential speedup F as N ! 1

for di�erent page sizes S.

time is t

a

+ N

S

R

. The maximum speedup factor F

that can be achieved by doing the writes sequen-

tially is

F =

N (t

a

+

S

R

)

t

a

+ N

S

R

: (1)

As N !1, the limit on speedup

F

1

= lim

N!1

F = 1 + t

a

R

S

: (2)

Figure 2 shows the speedup factor F for various

page sizes and write lengths for a typical low-cost

disk (t

a

= 15ms and R = 4MB=s). Table 1 shows

the limit of potential speedup when N !1.

The maximum speedup can be achieved if a suf-

�ciently large contiguous area can be found in the

database. This is often not the case in practice,

and the part of the database with the highest den-

sity of free pages should be used for writing. The

pages which must be skipped between writes must

be counted in the transfer time. This can be repre-

sented by a skip factor s, which is the amount by

which the transfer time must be multiplied. If the

area is contiguous, the skip factor is 1. If 25 per-

cent of disk space is free and it is evenly distributed

(the worst case), s = 4. Even now, the maximum

speedup would be by a factor of 31 for 512 byte

pages and by a factor of 4 for 4096 byte pages.

3



2.2 Implementation

The idea in shadow paging is to allocate a new phys-

ical page whenever a page is modi�ed. In concur-

rent shadow paging, the new page number is kept

in the incremental page table until the transaction

is committed. The new page number is internal to

the transaction until the transaction commits and

its changes are made visible to other transactions.

Allocation of physical page numbers can be de-

layed by introducing the concept of virtual page

numbers (note that these have nothing to do with

logical page numbers). A virtual page number is an

identi�er for a page known by the transaction and

the cache manager. The transaction may access a

page using the virtual page number, and the cache

will return the appropriate page. Virtual pages do

not usually have a physical page associated with

them; they only exist in the cache.

A virtual page number is allocated whenever a

page is �rst modi�ed. Typically this is done by

specifying an existing page number to the cache

manager. The cache manager will then allocate a

unique virtual page number and rename the page

in its memory to use the virtual number. The

old physical number is e�ectively removed from the

cache. Shadow paging guarantees that the old page

in the cache will not be dirty, and unless snapshots

[16] are used, no-one will ever access the old page

except in the case that the current transaction is

aborted.

Virtual page numbers cannot be stored in the

page table, as they are only temporary identi�ers

in volatile storage. Before a transaction can com-

mit, actual physical pages must be allocated for its

virtual pages (this is called the realization of the

virtual pages). Since many transactions are usually

committed as a batch, a large number of modi�-

cations can be combined, and all virtual pages of

the committing transactions can be realized at the

same time. The system can now allocate contigu-

ous disk pages and write them sequentially. This

means that close to the maximum speedup can be

achieved in practice, especially in high-concurrency

environments where a large number of transactions

end up in the same batch.

Modi�cation of page table pages is also done us-

ing virtual pages. When a commit batch is being

processed, virtual pages are created for all page ta-

ble pages that are going to be modi�ed. The vir-

tual page table pages are then realized together with

modi�ed data pages, and the actual physical page

numbers are stored in the page table pages. Finally,

both modi�ed data and page table pages are 
ushed

to disk, and when they have all been written, the

page table pointer is updated atomically to point to

the new page table.

It is also possible to allocate the new physical

pages on multiple disks, analogously to the two-

dimensional �le system of [14]. Space allocation

problems are easier with shadow paging, as it is

possible to skip used pages if a su�ciently large

contiguous area cannot be found.

The cache is allowed to allocate physical pages for

virtual pages even before realization. This is desir-

able if there are large update transactions which

create very many virtual pages. In such cases the

cache can make long enough writes to achieve most

of the maximum speedup. Transactions will still

access those pages with the virtual page number,

and the new physical page numbers will be inter-

nal to the cache until the virtual pages are realized

(for such pages, no pages are allocated during real-

ization as they already have a physical page). The

virtual page number can be released after the trans-

action holding the number has terminated.

It should be noted that this optimization makes

conventional clustering between logical pages im-

possible, as no attempt is made to keep the logical-

to-physical mapping linear. An alternate approach

to clustering is presented in section 4.

3 Performance

In this section a model is developed for the perfor-

mance of concurrent shadow paging with the write

optimizations of this paper. The model is based on

analyzing the I/O time (that is, disk seek/transfer

time) required for each operation. A steady state

solution is computed using the model. It is assumed

that performance is only limited by I/O resources.

Table 2 summarizes the notations used.

The �rst write processed in a commit batch will

always result in a page table modi�cation. Assum-

ing uniform distribution of writes, the second write

will cause a page table modi�cation unless it is on

the same page as the �rst one (on the average, this

results in (1 �

1

N

ptp

) writes), and so on. The total

number of data pages written per commit batch is

N

tpc

N

uw

. This leads to the geometric series

N

ptw

=

N

tpc

N

uw

�1

X

i=0

(1 �

1

N

ptp

)

i

for the number of page table pages written. The

sum of this series is

N

ptw

= N

ptp

�N

ptp

(1�

1

N

ptp

)

N

tpc

N

uw

:

In addition to leaf-level page table pages, a com-

mit batch writes a second-level page table page, the

modi�ed data pages, and the root pointer. All user

data writes are assumed to access separate pages

4



N

p

number of pages in the database

N

psz

page size

N

ptesz

page table entry size

N

ptp

=

N

p

N

ptesz

N

psz

number of page table pages

N

d

number of disks

U

io

I/O time utilization factor

t

aio

= N

d

U

io

available I/O time

t

a

average access time (including latency)

R disk transfer rate bytes/sec

t

x

=

N

psz

R

page transfer time (read/write)

p

ch

cache hit probability in reads

N

tps

transactions per second

N

cps

commit batches per second

N

tpc

=

N

tps

N

cps

transactions per commit batch

N

ur

user read requests per transaction

N

uw

user write requests per transaction

N

ptw

page table writes per commit batch

t

c

average I/O time per commit batch

t

r

average I/O time for reads per txn

t

t

average I/O time per transaction

s skip factor in writes

Table 2: Notations used in the performance analy-

sis.

(the worst case). Only two physical seeks will be

needed for the whole commit batch (one for the

data and page tables, and one for the page table

pointer which is written twice to implement atomic

write). The number of pages written in the batch

is N

tpc

N

uw

+N

ptw

+ 1, plus the page table pointer

write. The skip factor multiplies the normal writes.

The following formula gives the I/O time used for

processing a commit batch:

t

c

= 2t

a

+ (N

tpc

N

uw

+ N

ptw

+ 1)st

x

+ 2t

x

:

Besides commit processing and writes, a transac-

tion also uses I/O resources for reading. Some user

reads are satis�ed from the cache and some result

in physical reads. The number of physical reads per

transaction is (1�p

ch

)N

ur

, and each read typically

requires a separate seek. Thus,

t

r

= (1� p

ch

)N

ur

(t

a

+ t

x

):

The cost of the commit batch is divided among

all transactions participating in the batch. Thus,

the average I/O time per transaction is

t

t

= t

r

+

t

c

N

tpc

:

Assuming the transactions per second rate is only

limited by I/O time,

N

tps

=

t

aio

t

t

: (3)

p

ch

N

d

= 1 3 10 30

0.00 23 74 254 781

0.25 30 96 331 1021

0.50 42 136 476 1476

0.75 72 236 853 2662

0.90 125 436 1645 5141

0.95 168 620 2385 7454

1.00 266 1112 4336 13552

Table 3: TPS rate for di�erent numbers of disks and

cache hit rates for transactions making two reads

and two writes (shadow paging).

Denoting N

tps

with x and using the constants

a

1

= 2N

cps

(t

a

+ t

x

) +N

cps

st

x

(N

ptp

+ 1)�N

d

U

io

a

2

= (1� p

ch

)N

ur

(t

a

+ t

x

) + N

uw

st

x

a

3

= �N

cps

N

ptp

st

x

a

4

= (1�

1

N

ptp

)

N

uw

N

cps

this equation can be written as

a

1

+ a

2

x+ a

3

a

x

4

= 0: (4)

This can be solved using elementary numerical

methods. Since 0 < a

4

< 1 and ja

3

j � ja

1

j in all

practical cases, the equation is close to linear, and

the performance of the system scales quite linearly

when more disks are added.

Table 3 displays N

tps

in a disk-based database

application for di�erent numbers of disks and vari-

ous cache hit rates. Small transactions (two reads,

two writes) were analyzed for a 1 GB database

(U

io

= 0:9, t

a

= 0:015, N

psz

= 4096, R = 4MB=s,

N

cps

= 2, N

ur

= 2, N

uw

= 2). It was assumed that

a su�ciently large contiguous area can always be

found (s = 1).

The behaviour at high cache hit rates is interest-

ing. This is illustrated in table 4 which shows N

tps

for various page sizes and numbers of disks in a

main-memory environment (U

io

= 0:9, t

a

= 0:015,

R = 4MB=s, N

cps

= 2, N

ur

= 2, N

uw

= 2,

p

ch

= 1:0, s = 1). The �gures for higher num-

bers of disks are mostly theoretical, as performance

would be limited by the available CPU time, which

is not considered the current model.

Table 5 illustrates how the performance changes

when the skip factor is greater than one (N

d

= 1,

N

psz

= 512, U

io

= 0:9, t

a

= 0:015, R = 4MB=s,

N

cps

= 2, N

ur

= 2, N

uw

= 2).

5



N

psz

N

d

= 1 3 10 30

512.00 1768 5910 24433 95114

1024.00 909 3226 14575 51355

2048.00 480 1879 8198 26630

4096.00 266 1112 4336 13552

8192.00 157 613 2226 6834

Table 4: TPS rate for di�erent numbers of disks

and page sizes with 100 percent cache hit rate (a

main-memory database) for transactions making

two reads and two writes.

p

ch

s = 1 2 4 8

0.00 27 27 26 25

0.25 36 35 34 32

0.50 54 52 49 44

0.75 104 98 88 73

1.00 1768 871 432 215

Table 5: The e�ect of the skip factor on TPS rate

(one disk, 512 byte pages).

3.1 Comparison with Log-Based Sys-

tems

A similar model can be constructed for a log-based

system with a �xed logical-to-physical mapping. It

is assumed that maintaining the log will not require

any I/O resources (in practice there is a certain

overhead associated with logging). Furthermore,

it is assumed that a signi�cant portion of trans-

actions access random locations in the database; in

practice some writes could be avoided in hot spots

(for reads, the e�ect of caching is the same for both

shadow paging and logs).

Using the same notations as before, the I/O time

required by a transaction can be computed as fol-

lows. A read is satis�ed from the cache with the

probability p

ch

, and thus the average number of

physical reads per transaction is (1�p

ch

)N

ur

. Since

each read typically refers to a random location, a

seek is required for each read. The I/O time re-

quired for reads per transaction is

t

r

= (1� p

ch

)N

ur

(t

a

+ t

x

):

All writes must eventually be done to their orig-

inal location on disk, and this will usually require

a seek since the density of writes compared to the

size of the database is low. Thus, ignoring the ef-

fects of multiple writes to a hot spot page, the I/O

time required for doing the writes t

w

is

t

w

= N

uw

(t

a

+ t

x

):

p

ch

N

d

= 1 3 10 30

0.00 14 42 141 422

0.25 16 48 161 483

0.50 19 56 188 563

0.75 23 68 225 676

1.00 28 84 282 845

Table 6: TPS rate for di�erent numbers of disks and

cache hit rates for transactions making two reads

and two writes (�xed mapping).

Each transaction requires t

r

+ t

w

time. Thus,

t

t

= (1� p

ch

)N

ur

(t

a

+ t

x

) + N

uw

(t

a

+ t

x

):

Assuming the transactions per second rate is only

limited by I/O resources,

N

tps

=

t

aio

t

t

: (5)

For comparison, results computed using this for-

mula and the same parameters as table 3 are shown

in table 6. It is easy to see that, with these pa-

rameters and a low cache hit rate, shadow paging

provides almost twice the performance of the sys-

tem with a �xed mapping, and with a high cache

hit rate almost ten times the performance.

If hot spots were considered, they would reduce

the number of writes in a log-based system. If 20

percent of all writes were to hot spots, the total I/O

time would be reduced by somewhat less than 20

percent. This is greatly outweighted by the overall

speedup. If almost all writes go to hot spots, this

analysis is not valid.

The e�ect of seek length was not considered in

this analysis. However, it would not change the

results very much, since the rotational latency al-

ready forms a signi�cant portion of the average ac-

cess time.

4 Clustering

The optimizations in section 2 prevent conventional

clustering of related logical pages. Because it is

desirable to be able to write a page to a new lo-

cation without constraints, earlier clustering algo-

rithms for shadow paging which attempted to keep

the logical-to-physical mapping approximately lin-

ear [5, 7, 11] are not applicable. The problems are

at worst when reading large multi-megabyte objects

or scanning a large table.

The time required to read an object (or table) of

S bytes in N

parts

parts is

t(S;N

parts

) = d

S

N

psz

et

x

+ N

parts

t

a

:

6



1k
10k

100k
1M

10M

Object size

512

1024
2048

4096

8192

16384

32768

65536

Pa
ge

 s
iz

e

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

C
os

t f
ac

to
r

Figure 3: Worst-case fragmentation cost factor C

for di�erent page sizes N

psz

and object sizes S.

It is now assumed that in systems with a �xed map-

ping the object can always be stored as a contiguous

region (N

parts

= 1), although this optimal case is

not always possible in practice due to free space

fragmentation. It is also assumed that each page of

the object in a shadow paging system is stored in

a separate location (N

parts

= d

S

N

psz

e), which is the

worst case.

The worst-case fragmentation cost factor C can

be de�ned as

C =

t(S; d

S

N

psz

e)

t(S; 1)

: (6)

This expresses the worst-case overhead due to frag-

mentation, with the value 1 meaning no overhead,

value 2 meaning that I/O time is doubled, etc. Val-

ues for the fragmentation cost factor are shown in

�gure 3. In practice the cost factors are smaller,

partly because it becomes impossible due to free

space fragmentation to �nd su�ciently large con-

tiguous free areas to store the object in one piece,

partly because there might be locality in a shadow

paging system due to correlation in update times,

and partly because it is often more e�cient to store

a large object divided on several disks instead of

just one contiguous region on one disk.

It can be seen that fragmentation can be helped

by increasing the page size. On the other hand, as

seen from table 1, the write optimizations become

less e�ective when the page size increases. Also,

since the entire page needs to be written to a new

location if any part of it changes, transfer time in-

creases with page size.

The solution is to use variable-size pages (multi-

ples of the basic block size). The size of each logical

page can be stored in the page table where it is eas-

ily and e�ciently accessible whenever needed. The

basic page size should be chosen as small as possi-

ble to make small updates as fast as possible where

clustering is not needed, and larger pages should be

used for storing large objects or tables which are

often accessed sequentially. Variable-size pages al-

low tuning the sequential read versus small update

performance tradeo� on a per-object basis to best

suit the needs of each application.

Page size is optimal when the average cost of

an access is minimal. To express this formally, let

p

r

(S) be the probability that a particular access is

a read of size S and p

w

(S) be the probability that

the access is a write of size S. The probability that

the access is a read is p

r

=

P

1

S=0

p

r

(S), and the

probability that it is a write is p

w

=

P

1

S=0

p

w

(S).

By de�nition, p

r

+ p

w

= 1.

The cost of a read in terms of I/O time is

c

r

(S;N

psz

) = d

S

N

psz

e(t

a

+

N

psz

R

):

Writes are cheaper due to batching of writes. Using

the skip factor s, the cost of a write (ignoring the

initial seek as it is divided between many writes) is

c

w

(S;N

psz

) = d

S

N

psz

es

N

psz

R

:

The average cost of an arbitrary I/O operation is

c

io

(N

psz

) =

1

X

S=0

p

r

(S)c

r

(S;N

psz

) +

1

X

S=0

p

w

(S)c

w

(S;N

psz

): (7)

The optimal value for the page size is the value at

which c

io

(N

psz

) is minimum.

5 Conclusion and Further Re-

search

This paper began with a review of earlier results

on concurrent shadow paging, and pointed out that

technological development has removed the major

obstacles that have caused shadow paging to per-

form poorly. It was then shown how writes can

be speeded up by an order of magnitude or even

two orders of magnitude by using the 
exibility of-

fered by the page table to make all writes sequential,

and described a clustering method using variable-

size pages which is compatible with the write opti-

mizations.

The performance comparison in section 3.1, al-

though simpli�ed, indicates that at low cache hit

7



rates shadow paging could have twice the perfor-

mance of current log-based systems, and at high

cache hit rates as much as ten times the perfor-

mance of current systems. This de�nitely deserves

further research.

Recovery is trivial in the version of shadow paging

used in this paper, and this may be even more im-

portant than performance. Recovery code currently

forms a large and hard-to-debug part of log-based

database systems. It is much easier to implement

and debug a recovery system based on shadow pag-

ing.

Topics for current and future research include

snapshots and on-the-
y multi-level incremental

dumping [15, 16], �ne-granularity locking [15],

early releasing of locks [15], two-phase com-

mit in distributed databases [15], automatic I/O

load balancing between disks [15], use in main-

memory databases [15], implementation of save-

points and nested transactions, algorithms for ef-

�cient variable-length object allocation, and index

management. In addition, work is underway on for-

mal proofs of some aspects of the system and on

prototype implementation and performance evalu-

ation.

Acknowledgements

Many of the ideas presented in this paper have

arisen as a result of discussions with Heikki Suon-

sivu, Tero Kivinen, Johannes Helander, Kenneth

Oksanen, Heikki Saikkonen, and Eljas Soisalon-

Soininen. I thank them for many fruitful discus-

sions, suggestions, and comments.

References

[1] R. Agrawal and D. J. DeWitt. Integrated

concurrency control and recovery mechanisms:

Design and performance evaluation. ACM

Transactions on Database Systems, 10(4):529{

564, 1985.

[2] R. Agrawal and D. J. DeWitt. Recovery archi-

tectures for multiprocessor database machines.

In ACM PODS, pages 131{145, 1985.

[3] J. Gray, P. McJones, M. Blasgen, B. Lind-

say, R. Lorie, T. Price, F. Putzolu, and

I. Traiger. The recovery manager of the Sys-

tem R database manager. ACM Computing

Surveys, 13(2):223{242, 1981.

[4] J. Kent, H. Garcia-Molina, and J. Chung.

An experimental evaluation of crash recovery

mechanisms. In ACM PODS, pages 113{121,

1985.

[5] J. M. Kent. Performance and Implementation

Issues in Database Crash Recovery. PhD the-

sis, Department of Electrical Engineering and

Computer Science, Princeton University, 1985.

[6] B. W. Lampson and H. E. Sturgis. Crash re-

covery in a distributed data storage system.

Technical report, Computer Science Lab., Xe-

rox Palo Alto Research Center, Apr. 1979.

[7] R. A. Lorie. Physical integrity in a large

segmented database. ACM Transactions on

Database Systems, 2(1):91{104, 1977.

[8] D. A. Menas�ce and O. E. Landes. On the de-

sign of a reliable storage component for dis-

tributed database management systems. In

Very Large Databases, pages 365{375, 1980.

[9] C. Mohan, D. Haderle, B. Lindsay, H. Pira-

hesh, and P. Schwarz. ARIES: A transaction

recovery method supporting �ne granularity

locking and partial rollbacks using write-ahead

logging. ACM Transactions on Database Sys-

tems, 17(1):94{162, 1992.

[10] J. Ousterhout and F. Douglis. Beating the

I/O bottleneck: A case for log-structured �le

systems. ACM Operating Systems Review,

23(1):11{28, 1989.

[11] A. Reuter. A fast transaction-oriented logging

scheme for UNDO recovery. IEEE Transac-

tions on Software Engineering, SE-6(4):348{

356, 1980.

[12] M. Rosenblum and J. K. Ousterhout. The de-

sign and implementation of a log-structured �le

system. In Proc. 13th ACM Symposium on Op-

erating System Principles, pages 1{15, 1991.

Published as ACM Operating Systems Review,

Vol. 25, No. 5, 1991.

[13] M. Seltzer and M. Stonebraker. Transaction

support in read optimized and write optimized

�le systems. In Very Large Data Bases, pages

174{185, 1990.

[14] M. Stonebraker, R. Katz, D. Patterson, and

J. Ousterhout. The design of XPRS. In Very

Large Data Bases, pages 318{330, 1988.

[15] T. Yl�onen. Concurrent shadow paging: A

new direction for database research. Technical

Report 1992/TKO-B86, Helsinki University of

Technology, Finland, 1992.

[16] T. Yl�onen. Snapshots, read-only transactions

and on-the-
y multi-level incremental dumping

with concurrent shadow paging. Technical re-

port, Helsinki University of Technology, 1993.

8


